

A new method for determining resonance poles in finite volume

Congwu Wang Fudan Uni & Ruhr Uni Bochum

In Collaboration with:

Lukas Bovermann, Evgeny Epelbaum, Hermann Krebs, and Dean Lee 11th International Workshop on Chiral Dynamics, Bochum, Germany, 27/08/2024

Resonance

Quasi-bound; Finite lifetime; Barrier tunneling

• Theoretically, S-matrix pole in the complex energy plane $(E_0 - i \Gamma/2)$

Experimentally, a peak in the cross section

Background: Resonance in finite volume (FV)

Standard procedure in lattice QCD R. Briceño, J. Dudek, R. Young, RMP 90, 025001 (2018)

Lüscher formula is difficult to apply successfully in nuclear lattice EFT

• the errors of the energy levels are larger than their separations $_{>}$

B.-N. Lu, T. Lähde, D. Lee, U.-G. Meißner , PLB 760, 309-313 (2016)

see D. Lee's talk on NLEFT's review (29.08)

 \geq

see L. Bovermann's talk on beta decay in NLEFT (27.08)

Persistent state method: intuitive explanation

- A resonance pole implies the existence of long-lived states that are compact in size
- $|\langle \psi_{\text{test}}|E\rangle|^2$ (spectral overlap function) peaked around resonance energy E_0 for compact $\psi_{\text{test}}(r)$

Persistent state method: two realizations

Spectral function and survival amplitude

The QM survival amplitude of a resonant state is given as

$$f(t) = \langle \psi | e^{-iHt} | \psi \rangle$$

In the Fock–Krylov method (i.e., the resonant state expressed as expansion of the scattering states), thus the survival amplitude is

$$f(t) = \int dE \, |a(E)|^2 e^{-iEt} \qquad \qquad |\psi\rangle = \int dE \, a(E) \, |E\rangle$$

N. S Krylov, V. A. Fock, JETP 17, 93 (1947)

RUHR

UNIVERSITÄT BOCHUM

One can proceed to evaluate f(t) if the spectral function is known. For Breit-Wigner parameterization,

$$a(E) \propto \frac{1}{E - E_0 + i\Gamma/2}$$
 $f(t) \propto e^{-iE_0 t - \Gamma t/2}$

Ansatz: simple persistent state approximating the resonant state

Persistent state: compact spatially (e.g., Gaussian) and decaying slowly

Benchmark calculation

- Toy model: two spinless particles (1D)
- $V(x) = 30 e^{-\left(\frac{x}{3 \text{ fm}}\right)^2} 36 e^{-\left(\frac{x}{1 \text{ fm}}\right)^2}$ (MeV), $\mu = 938.92$ (MeV)
- Single resonance pole in even parity $E_0 = 10.55 \text{ (MeV) } \Gamma = 1.45 \text{ (MeV)}$ (from solving the L–S equation)

Finite volume continuum calculation

- Solving the eigenvalue problem by the plane-wave based discrete variable representation S. König, FB 61, 20 (2020)
- Infinite volume extrapolation $(L \to \infty)$ for $E_0(L)$ and $\Gamma(L)$

Finite volume Lattice calculation

- Non-perturbative calculation using the Lanczos algorithm
- Infinite volume and continuum extrapolation $(L \to \infty \text{ and } a \to 0)$ for $E_0(L, a)$ and $\Gamma(L, a)^a$

20

15

(MeV) /

Spectral overlap function in FV continuum

Spectral overlap function on lattice

Breit-Wigner fit
 Continuum extrapolation
 E₀(L, a) Γ(L, a)
 E₀(L, a → 0) Γ(L, a → 0)

■ Infinite volume extrapolation $E_0(L \to \infty, a \to 0) \Gamma(L \to \infty, a \to 0)$

• AIC suggests linear fit: $E_0 = 10.46 \pm 0.11 \text{ (MeV)}$ $\Gamma = 1.45 \pm 0.22 \text{ (MeV)}$

Survival amplitude in FV continuum

Non-obvious finite volume effect

Varying Gaussian test states

- Same survival amplitudes (~10⁻³ differences)
 before the wave packet hits the boundary
- No needs for volume extrapolation

- Persistent states indeed close to the exact resonant state (Breit-Wigner parameterization of *a*(*E*))
- Persistent state: $x_0 = 2.6$ (fm)

Survival amplitude in FV continuum

• The fit $f(t) \propto e^{-iE_0t - \Gamma t/2}$

RUHR UNIVERSITÄT BOCHUM

RUB

Survival amplitude in FV lattice

- The fit $f(t) \propto e^{-iE_0t \Gamma t/2}$
- Continuum extrapolation

Summary and outlook

Persistent state method is proposed and benchmarked using a two-body model

		spectral overlap function		survival amplitude	
	exact	continuum	lattice	continuum	lattice
<i>E</i> ₀ (MeV)	10.55	10.52 ± 0.02	10.46 ± 0.11	10.54 ± 0.01	10.56 ± 0.01
Г (MeV)	1.45	1.43 ± 0.02	1.45 ± 0.22	1.38 ± 0.01	1.39 ± 0.01

□ Multiple poles

- By spectral function (3D, >2 poles)
- By survival amplitude

□ Three-body system

□ Monte Carlo calculation for a realistic nuclear system (by A. Sarkar et.al.)

Summary and outlook

Persistent state method is proposed and benchmarked using a two-body model

		spectral overlap function		survival amplitude	
	exact	continuum	lattice	continuum	lattice
<i>E</i> ₀ (MeV)	10.55	10.52 ± 0.02	10.46 ± 0.11	10.54 ± 0.01	10.56 ± 0.01
Г (MeV)	1.45	1.43 ± 0.02	1.45 ± 0.22	1.38 ± 0.01	1.39 ± 0.01

□ Multiple poles

- By spectral function (3D, >2 poles)
- By survival amplitude
- □ Three-body system

Monte Carlo calculation for a realistic nuclear system (by A. Sarkar et.al.)
Thank you

