

RUHR-UNIVERSITÄT BOCHUM EXPLICIT ESTIMATION OF TRUNCATION UNCERTAINTIES IN CHIRAL EFT

Chiral Dynamics 2024, WG 3, Few-Body physics

CVD 2/4 BOCHUM

Sven Heihoff, Evgeny Epelbaum, Arseniy Filin

contact: sven.heihoff@rub.de

RUHR-UNIVERSITÄT BOCHUM EXPLICIT ESTIMATION OF TRUNCATION UNCERTAINTIES IN CHIRAL EFT

Chiral Dynamics 2024, WG 3, Few-Body physics

Sven Heihoff, Evgeny Epelbaum, Arseniy Filin

BOCHUN

contact: sven.heihoff@rub.de

erc

Outline

 Aim: Calculate some Nucleon-Nucleon scattering observable x

1.) What is the theory and how to go from theory to X?

RUHR

BOCHUM

UNIVERSITÄT

Outline

- Aim: Calculate some Nucleon-Nucleon scattering observable x
- 1.) What is the theory and how to go from theory to X?
- 2.) For a falsifiable theory, distribution crucial:

 $p(X^{(k)} | \text{theory})$

3.) Results – What can we learn from $p(X^{(k)} | \text{theory})$?

What is chiral EFT?

- QCD is best description of strong force so far
- Has not been solved at level of nucleons

What is chiral EFT?

- QCD is best description of strong force so far
- Has not been solved at level of nucleons
- Chiral EFT is low-energy effective theory of QCD
- Degrees of freedom: Nucleons and pions
- Start with most general Lagrangian ← a lot of terms!

BOCHUM

BOCHUM

Power counting

- In principle infinitely many terms in Lagrangian
- Expansion parameter: $Q \in \left(\frac{p}{\Lambda_{\rm B}}, \frac{M_{\rm T}}{\Lambda_{\rm B}}\right) \sim \frac{1}{3}$
- Each diagram is assigned to a power of *Q*

E. Epelbaum, Nuclear Forces from Chiral Effective Field Theory: A Primer (2010)

Power counting

In principle infinitely many terms in Lagrangian

• Expansion parameter: $Q \in \left(\frac{p}{\Lambda_{\rm B}}, \frac{M\pi}{\Lambda_{\rm B}}\right) \sim \frac{1}{3}$

- Each diagram is assigned to a power of Q
 → Hierarchy of diagrams by their importance
 → Finite order → finite set of diagrams
 - \rightarrow Allows for systematic improvement of theory

RUHR

BOCHUM

UNIVERSITÄT

• Lagrangian looks like:

 $L = A_{LO} + A_{NLO} + A_{N^2LO} + \cdots$ with $A_{LO} \propto Q^0 A_{NLO} \propto Q^2$, $A_{N^2LO} \propto Q^3$ thus $A_{LO} > A_{NLO} > A_{N^2LO}$

The final step: How to get observables?

- Finite set of diagrams can be summed into a QM potential V = V(p, p')
- Lippmann-Schwinger-equation:

 $T = V + VGT \Rightarrow (1 - VG)T = V$

- With *G* as free propagator and *T* as transition matrix (directly connected to observables)
- Solved in momentum space and partial-wave decomposed

The final step: How to get observables?

- Finite set of diagrams can be summed into a QM potential V = V(p, p')
- Lippmann-Schwinger-equation:

 $T = V + VGT \Rightarrow (1 - VG)T = V$

- With *G* as free propagator and *T* as transition matrix (directly connected to observables)
- Solved in momentum space and partial-wave decomposed
- 2N potential in chiral EFT leads to high-precision description of 2N data

P. Reinert, et al., Eur. Phys. J. A 54, 86 (2018)

Nice theory, but "a physicist who has no errorbars is also just a religious person."

- Uncertainties of the fitting protocol of the LECs
 - Numerical approximations (especially in EM contributions)
 - Fitting algorithm
 - Physical constants
 - Data selection

- Uncertainties of the fitting protocol of the LECs
 - Numerical approximations (especially in EM contributions)
 - Fitting algorithm
 - Physical constants
 - Data selection
- Statistical and systematical uncertainties of the data itself

- Uncertainties of the fitting protocol of the LECs
 - Numerical approximations (especially in EM contributions)
 - Fitting algorithm
 - Physical constants
 - Data selection
- Statistical and systematical uncertainties of the data itself
- Theory uncertainty
 - Impact of neglecting higher orders of Chiral EFT

- Uncertainties of the fitting protocol of the LECs
 - Numerical approximations (especially in EM contributions)
 - Fitting algorithm
 - Physical constants
 - Data selection
- Statistical and systematical uncertainties of the data itself
- Theory uncertainty
 - Impact of neglecting higher orders of Chiral EFT

► In this talk

• Aim: probability distribution $p(X^{(k)})$ of observable X at some order k of Chiral EFT.

Bayesian estimation of truncation uncertainties

• Assumption: Expansion is the same for observable $X^{(k)}$ as for potential

$$X^{(k)} = X_{\text{ref}} \cdot \left(c_0 + \sum_{i=2}^k c_i \cdot Q^i + \Delta_k \right)$$

• With expansion coefficients $c_i = \frac{X^{(i)}}{X_{\text{ref}}Q^i}$ and trunc. uncertainty $X_{\text{ref}}\Delta_k = X_{\text{ref}}\sum_{i=k+1}^{\infty} c_i \cdot Q^i$

J. A. Melendez, S. Wesolowski, and R. J. Furnstahl, Phys. Rev. C 96, 024003 (2017), arXiv:1704.03308

Bayesian estimation of truncation uncertainties

• Assumption: Expansion is the same for observable $X^{(k)}$ as for potential

$$X^{(k)} = X_{\text{ref}} \cdot \left(c_0 + \sum_{i=2}^k c_i \cdot Q^i + \Delta_k \right)$$

• With expansion coefficients $c_i = \frac{X^{(i)}}{X_{\text{ref}}Q^i}$ and trunc. uncertainty $X_{\text{ref}}\Delta_k = X_{\text{ref}}\sum_{i=k+1}^{\infty}c_i \cdot Q^i$

- Bayes theorem yields: $p(\{c_{j\in[k+1,\infty]}\} \mid \{c_{i\in[0,k]}\})$
 - → Obtain a probability distribution $p(\Delta_k^h | \{c_i\})$ for $\Delta_k^h = \sum_{i=k+1}^h c_i \cdot Q^i$

RUHR UNIVERSITÄT

BOCHLIM

J. A. Melendez, S. Wesolowski, and R. J. Furnstahl, Phys. Rev. C 96, 024003 (2017), arXiv:1704.03308

Issues of Bayesian approach

• Chiral EFT results at $E_{lab} = 150 \text{ MeV}$ and cutoff $\Lambda = 450 \text{MeV}$

 $\sigma_{\text{tot}} = 52.15_{\text{LO}} - 2.94_{\text{NLO}} + 1.25_{\text{N2LO}} + 0.34_{\text{N3LO}} + 0.44_{\text{N4LO}} + 0.07_{\text{N4LO}} + 0.07_{\text{N4$

• Final result with Bayesian error: $\sigma_{tot}^{N4LO+} = 51.32 \pm 0.19 \text{ mb}$

For algorithm see: E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020), arXiv:1907.03608

Issues of Bayesian approach

• Chiral EFT results at $E_{lab} = 150 \text{ MeV}$ and cutoff $\Lambda = 450 \text{MeV}$

 $\sigma_{\text{tot}} = 52.15_{\text{LO}} - 2.94_{\text{NLO}} + 1.25_{\text{N2LO}} + 0.34_{\text{N3LO}} + 0.44_{\text{N4LO}} + 0.07_{\text{N4LO}}$

• Final result with Bayesian error: $\sigma_{tot}^{N4LO+} = 51.32 \pm 0.19 \text{ mb}$

For algorithm see: E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020), arXiv:1907.03608

• What if, we measure in smb? x mb = (x + 100) smb

Issues of Bayesian approach

• Chiral EFT results at $E_{lab} = 150 \text{ MeV}$ and cutoff $\Lambda = 450 \text{MeV}$

 $\sigma_{\text{tot}} = 52.15_{\text{LO}} - 2.94_{\text{NLO}} + 1.25_{\text{N2LO}} + 0.34_{\text{N3LO}} + 0.44_{\text{N4LO}} + 0.07_{\text{N4LO}} + 0.07_{\text{N4$

- Final result with Bayesian error: $\sigma_{tot}^{N4LO+} = 51.32 \pm 0.19 \text{ mb}$ For algorithm see: E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020), arXiv:1907.03608
- What if, we measure in smb? x mb = (x + 100) smb
 - $\sigma_{\text{tot}}^{\text{N4LO}+} = 151.32 \pm 0.49 \text{ smb}$
 - \rightarrow Bayesian uncertainty dependent on absolute scale!
- Experiment: 51.02 ± 0.3 mb P.W. Lisowski et al., Phys. Rev. Lett. 49 (1982), 255-259

RUHR UNIVERSITÄT

BOCHUM

Expansion of potential really also valid for observables?

Expansion of potential really also valid for observables?

Including next-higher order at level of nuclear potential!

Method

- How to obtain $p(X^{(k)})$?
 - 1.) Include contact diagrams of next higher order $\mathbf{k}+1$ to potential
 - 2.) Set LECs $\vec{a}^{(k+1)}$ to natural values

Method

- How to obtain $p(X^{(k)})$?
 - 1.) Include contact diagrams of next higher order $\mathbf{k}+1$ to potential
 - 2.) Set LECs $\vec{a}^{(k+1)}$ to natural values
 - 3.) Refit all lower order LECs $\vec{a}^{(i \in [0,k])}$
 - 4.) Repeat m times for different LECs of next higher order
 - → *m* different values for $X^{(k)}$ ~ sample of $p(X^{(k)})$

Method

- How to obtain $p(X^{(k)})$?
 - 1.) Include contact diagrams of next higher order $\mathbf{k}+1$ to potential
 - 2.) Set LECs $\vec{a}^{(k+1)}$ to natural values
 - 3.) Refit all lower order LECs $\vec{a}^{(i \in [0,k])}$
 - 4.) Repeat m times for different LECs of next higher order
 - → *m* different values for $X^{(k)}$ ~ sample of $p(X^{(k)})$
- Mathematically: Explicitly integrating out the diagrams of order k + 1

$$p(X^{(k)}) = \int d\vec{a}^{(k+1)} \cdot \delta(X^{(k+1)}(\vec{a}^{(i \in [0,k+1])}) - X^{(k)}) \cdot p(\vec{a}^{(i \in [0,k+1])})$$

• Uncertainty: width of $p(X^{(k)})$

What is natural for the LECs?

- Naturalness: Every physical parameter should be in the order of 1
 - Compared to a reasonable physical scale
 - No proof, but generally accepted idea in physics
 - Here: Encoded in probability distribution for LEC values $p(a_i^{(i)})$

What is natural for the LECs?

- Naturalness: Every physical parameter should be in the order of 1
 - Compared to a reasonable physical scale
 - No proof, but generally accepted idea in physics
 - Here: Encoded in probability distribution for LEC values $p(a_i^{(i)})$
- Can we infer $p(\vec{a}^{(k+1)})$ from the LECs fitted so far?
 - Assume: $p(a_i^{(i)})$ is independent of the order *i* and is the same for all elements of $\vec{a}^{(i)}$
 - Assume: $p(a_i^{(i)}) \sim N(0, w)$ follows Gaussian with mean 0 and standard deviation w
 - Bayes theorem:

$$p(w \mid \vec{a}^{(i \in [0,k])}) \propto p\left(\vec{a}^{(i \in [0,k])} \mid w\right) \cdot p(w)$$

Naturalness of known LECs

• $p(w \mid \vec{a}^{(i \in [0,k])}) \propto p(\vec{a}^{(i \in [0,k])} \mid w) \cdot p(w)$

Epelbaum et al., Front. in Phys. 8, 98 (2020), arXiv:1911.11875

NIVERSITÄT BOCHUM

10 Explicit Estimation of Uncertainties in Chiral EFT | Sven Heihoff

absolute value [natural units]

What we thought we do Calculate $X^{(k)}$ and add randomly higher order contributions of natural size \rightarrow Truncation error

Results PRELIMINARY!

RUHR UNIVERSITÄT BOCHUM

 $p\left(\sigma_{\text{tot}}^{(N4LO+)}\right)$

 $\sigma_{\text{tot}}^{(N4LO+)}$

 Bayesian model underestimates for low-energy regime and overestimates for high-energy regime compared to uncertainty here

RUHR

BOCHUM

UNIVERSITÄT

 $\sigma_{\text{tot}}^{(N4LO+)}$

- Bayesian model underestimates for low-energy regime and overestimates for high-energy regime
- Double expansion in momentum and pion mass
 - \rightarrow Two energy regimes

RUHR

BOCHUM

UNIVERSITÄT

 $\sigma_{tot}^{(N4LO+)}$

- Bayesian model underestimates for low-energy regime and overestimates for high-energy regime
- Double expansion in momentum and pion mass
 - \rightarrow Two energy regimes
- Why the dips?
 - Number of experiments and their precision ist not equally distributed between 0MeV and 280MeV

RUHR

UNIVERSITÄT BOCHUM RIR

 $\left(\sigma_{\text{tot}}^{(N4LO+)}\right)$

- Bayesian model underestimates for low-energy regime and overestimates for high-energy regime
- Double expansion in momentum and pion mass
 - \rightarrow Two energy regimes
- Why the dips?
 - Number of experiments and their precision is not equally distributed between 0MeV and 280MeV

RUHR

UNIVERSITÄT BOCHUM

$p(X^{(k)})$ is actually not only truncation uncertainty

Theory

 Uncertainty of next-higher order contact forces

Data

- Stat. and sys. uncertainties
- Distribution of data among observables and energy ranges

 $\mathbf{X}(k)$

Beliefs

- Natural LECs
- No inclusion of theory's precision predicition in fit
 - Fit protocol

. . .

RUHR

BOCHUM

UNIVERSITÄT

RUB

•

Conclusion

- We have obtained the **combined uncertainty** of our chiral EFT model
 - Including truncation uncertainty of contact forces, as well as uncertainty from the data
 - Using our prior beliefs

Conclusion and Outlook

- We have obtained the combined uncertainty of our chiral EFT model
 - Including truncation uncertainty of contact forces, as well as uncertainty from the data
 - Using our prior beliefs
- Investigate different chiral orders, different cutoffs
- So far, pion-exchange is used in calculation, but its truncation uncertainty is not yet estimated
- How to disentangle statistical and truncation uncertainty?
- How to propagate these uncertainties towards few- and many-body calculations?

Back up slides More results, more preliminary!

Back up slides Phaseshifts

20 Explicit Estimation of Uncertainties in Chiral EFT | Sven Heihoff

1S0

- Larger uncertainty for lower energies
- Smaller uncertainty for higher energies

Compared to Bayesian estimation

UNIVERSITÄT

BOCHUM

Back up slides Using different distribution for higher-order LECs

Histograms for higher-order LECs

- Investigated 4 different distribution for higher-order LECs in total
- For each distribution 1000 fits have been conducted

RUHR

UNIVERSITÄT BOCHUM RUR

Histograms for reduced chisq

- Entem-Machleidt-Nosyk N4LO+ best χ^2/N_{dat} (0-300MeV): ~ 1.2 E. Epelbaum et al., Handbook of Nuclear Physics 2022
- Fits without 2π exchange ~ 1.9 (deviates ~45 σ from 1!)
- Successful PWA ($\chi^2/N_{dat} \sim 1$) and model uncertainty are two different things!

Back up slides Naturalness of LECs

Our general approach

- Using power counting, nuclear forces from chiral Lagrangian at some fixed chiral order are derived
- Forces are regulated, with cutoff regulator as function of external nuclear momenta and cutoff Λ
 - Regulator must leave all symmetries intact
 - Infinite number of UV-divergences, if Λ → ∞, from iterated potential, but at finite chiral order not enough counter terms available → finite cutoff!
 - Demanding no deeply bound states
 - $\rightarrow \Lambda \sim \Lambda_B$ and Weinberg power counting \rightarrow LECs ~ 1
- Fitting the bare(!) coefficients of the short-range operators (LECs), leaving the cutoff finite
 - → Implicit renormalization of LECs (Renormalized LECs are actually unknown for pionful theory)

Epelbaum et al., Front. in Phys. 8, 98 (2020), arXiv:1911.11875

What are natural values?

- $p(w \mid \vec{a}^{(i \in [0,k])}) \propto p(\vec{a}^{(i \in [0,k])} \mid w) \cdot p(w)$
- What is $p\left(\vec{a}^{(i \in [0,k])} | w\right)$?
 - Product of probabilities of every element of a^(i ∈ [0,k]), that it comes from N(0,w) ?
 - Probability, that this set of LECs is drawn from N(0, w) ? Tail-sensitive test S. Aldor-Noiman et al., Am. Stat. 67, 249 (2013)
- → If assumptions are fulfilled, the LECs are indeed drawn from a distribution with $w \sim 1$

RUHR

BOCHUM

UNIVERSITÄT

Histogram of LECs

- "Sign problem" of LECs in Chiral EFT
 - Sign of contact forces is just convention
 - → Signs of LECs can be changed without any effects for theory or observables
- What are "natural units" of LECs?
 - LECs of order Q²ⁿ are given in units of 10⁴GeV⁻²⁻²ⁿ

RUHR

BOCHUM

UNIVERSITÄT

RUR

Histogram of LECs

- "Sign problem" of LECs in Chiral EFT
 - Sign of contact forces is just convention
 - \rightarrow Signs of LECs can be changed without any effects for theory or observables
- What are "natural units" of LECs?
 - LECs of order Q^{2n} are given in units of 10^4GeV^{-2-2n}

BOCHUM