Studies of A > 3 few-nucleon systems within next-to-leading order Pionless Effective Field Theory (#EFT)

Martin Schäfer

Nuclear Physics Institute, Czech Academy of Sciences, Řež, Czech Republic

N. Barnea, B. Bazak, M. Bagnarol

27th August 2024

The 11th International Workshop on Chiral Dynamics, Bochum, Germany

Nuclear interaction behind the looking glass

Nuclear interaction :

Two-body (*NN* scattering, ²H)

Three-body (*Nd* scattering, ³H, ³He, ...)

Bound state properties $(^{4}He, ...)$

 $\xrightarrow{} \mathbf{Precise few-body methods}$

Few-body A > 3 continuum (scattering, reactions, ...)

Nuclear few-body continuum

Analyzing power A_y in low-energy N-d and p-³He elastic scattering

(A. Margaryan et al. Phys. Rev. C 93 (2016) 054001; L. Girlanda, Phys. Rev. C 99 (2019) 054003)

Isoscalar monopole resonance of ${}^{4}\mathrm{He}$ (the first ${}^{4}\mathrm{He}$ excited state)

- (S. Bacca et al., Phys. Rev. Lett. 110 (2013) 042503; S. Kegel et al. Phys. Rev. Lett. 130 (2023) 152502)
- \rightarrow discrepancy between experimental and theoretically predicted monopole transition form factor

Splitting between ${}^2P_{3/2}$ and ${}^2P_{1/2}$ partial waves in ${}^4\mathrm{He}+\mathrm{n}$

(R. Lazauskas, Phys. Rev C 97 (2018) 044002; A. M. Shirokov et al., Phys. Rev. C 98 (2018) 044624)

Big Bang Nucleosynthesis reactions

 \rightarrow astrophysical S-factors of $d(d, p)^3$ H and $d(d, n)^3$ He reactions at very low energies (100 keV)

#EFT - basic idea

Baryonic EFT :

 \rightarrow no pionic degrees of freedom

$$LO \qquad \bigwedge \qquad \delta(\mathbf{r}_{12}), \ \delta(\mathbf{r}_{12})\delta(\mathbf{r}_{23})$$

$$NLO \qquad \bigwedge \qquad \bigwedge \qquad \overleftarrow{\nabla}_{\mathbf{r}_{12}}^2 \delta(\mathbf{r}_{12}) + \delta(\mathbf{r}_{12})\overrightarrow{\nabla}_{\mathbf{r}_{12}}^2, \ \delta(\mathbf{r}_{12})\delta(\mathbf{r}_{23})\delta(\mathbf{r}_{34})$$

 N^2LO \wedge \wedge S - D tensor (T = 0), momentum dep. 3-body N^3LO ... $(\nabla_{\mathbf{r}_1} \cdot \nabla_{\mathbf{r}_2})\delta(\mathbf{r}_{12}), LS$, tensor (T = 1), more 4-body ?

(H.-W. Hammer, Sebastian König, and U. van Kolck, Rev. Mod. Phys. 92 (2020) 025004)

¢EFT

#EFT

- breakdown scale $M \sim m_{\pi}$, estimate of typical momentum $Q(^{4}{
 m He}) pprox 115{
 m MeV}$
- nuclear pionless EFT has large truncation error at LO
 → however, it seems to works well in few-body physics

Regularization/Renormalization

$$egin{aligned} \mathcal{C} \ \delta(\mathbf{r}_{ij}) &
ightarrow \mathcal{C}(\lambda) \left(rac{\lambda}{2\sqrt{\pi}}
ight)^3 \mathrm{e}^{rac{-\lambda^2 r_{ij}^2}{4}} \ \mathcal{O} \ \delta(\mathbf{r}_{ij}) \delta(\mathbf{r}_{jk}) &
ightarrow \mathcal{D}(\lambda) \left(rac{\lambda}{2\sqrt{\pi}}
ight)^6 \mathrm{e}^{rac{-\lambda^2 (r_{ij}^2 + r_{jk}^2)}{4}} \end{aligned}$$

- $C(\lambda), D(\lambda)$ are low energy constants (LECs) tuned to reproduce two-body resp. three-body observables for each λ
- required (RG invariance for λ >> M)
 → all observable will become λ independent when λ → ∞

 $O_{\lambda} = O_{\infty} + \frac{\alpha}{\lambda} + \frac{\beta}{\lambda^2} + \frac{\gamma}{\lambda^3} + \dots$

1

#EFT

LO #EFT

Leading order (LO) :

(exp. constraints)

 $a_{NN}^{0} (a_{nn}^{0}) = -18.95(40) \text{ fm}$ $a_{NN}^{1} (a_{np}^{1}) = 5.419(7) \text{ fm}$ $B(^{3}\text{H}) = 8.482 \text{ MeV}$ Effective range expansion :

$$k \cot(\delta) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

#EFT

NLO **#**EFT

Leading order (LO) :

(exp. constraints)

 $a_{NN}^{0} (a_{nn}^{0}) = -18.95(40) \text{ fm}$ $a_{NN}^{1} (a_{np}^{1}) = 5.419(7) \text{ fm}$ $B(^{3}\text{H}) = 8.482 \text{ MeV}$

Next-to-leading order (NLO) :

(exp. constraints)

 $r_{NN}^0 (r_{nn}^0) = 2.75(11) \text{ fm}$ $r_{NN}^1 (r_{np}^1) = 1.753(8) \text{ fm}$ $B(^4\text{He}) = 28.296 \text{ MeV}$

¢EFT

NLO *[#]*EFT

Where we stand ?

- NLO *#*EFT using 6 experimental constraints (a, r) of NN(¹S₀) and NN(³S₁), B(³H), B(⁴He)
- perturbative NLO using potentials (easily extended to 2, 3, 4, 5, 6, ...-body systems)

What do we want to study ?

- convergence of all #EFT NLO predictions with λ
- comparison with experimental results

 \longrightarrow no more $A \leq 5$ nuclear bound states to test the theory \longrightarrow few-body scattering

 \rightarrow perturbative NLO #EFT predictions at 4- and 5-body level

Few-Body scattering

(Phys. Rev. C 107 (2023) 064001; Phys. Lett. B 844 (2023) 138078)

Universality

Universality

Universal fermionic relations (STM, Petrov, Deltuva, ...) Atom-Dimer scattering

$$\frac{a_{ad}}{a_{aa}} = 1.1791 + 0.553 \frac{r_{aa}}{a_{aa}}; \ \frac{r_{ad}}{a_{aa}} = -0.038 + 1.04 \frac{r_{aa}}{a_{aa}}$$

Dimer-Dimer scattering

$$\frac{a_{dd}}{a_{aa}} = 0.5986 + 0.105 \frac{r_{aa}}{a_{aa}}; \ \frac{r_{dd}}{a_{aa}} = 0.133 + 0.51 \frac{r_{aa}}{a_{aa}}$$

These results are reproduced for spin-saturated systems:

- Neutron-Deuteron S = 3/2 scattering
- Deuteron-Deuteron S = 2 scattering

$n + d \ (S = 3/2, T = 1/2)$ and (S = 1/2, T = 1/2) scattering

$n + {}^{3}\text{H}$ and $n + {}^{3}\text{He}$ scattering

- four different 4-body channels (S = 0, T = 1), (S = 0, T = 0), (S = 1, T = 1), and (S = 1, T = 0)
- no isospin breaking terms, our approach does not distinguish between different 4-body T_z

For $n + {}^{3}$ H $(T_{z} = -1)$: $S = 0 \longrightarrow (S = 0, T = 1)$ $S = 1 \longrightarrow (S = 1, T = 1)$ For $n + {}^{3}$ He $(T_{z} = 0)$: $S = 0 \longrightarrow (S = 0, T = 0) + (S = 0, T = 1) \quad {}^{4}$ He (0_{2}^{+}) resonance $S = 1 \longrightarrow (S = 1, T = 0) + (S = 1, T = 1)$

• for $n + {}^{3}$ He scattering we must include two different isospin channels

$n + {}^{3}\text{H}$ and $n + {}^{3}\text{He}$ scattering

• four-body force needed only in (S = 0, T = 0) channel

Experiment & Theory : $n + {}^{3}H$ and $n + {}^{3}He$ scattering lengths

(Phys. Rev. C 42 (1990) 438; Phys. Rev. C 102 (2020) 034007; Few-Body Syst. 34 (2004) 105; Phys. Lett B 721 (2013) 355; Phys. Rev. C 68(R) (2003) 021002)

$n + {}^{4}\text{He}$ scattering

For references to all theoretical results, see (Phys. Lett. B 844 (2023) 138078).

Summary & Outlook

- constructed #EFT potential up to NLO
- tests on calculations of 2-, 3-, 4-, and 5-body elastic scattering

Next steps :

- addition of nonperturbative Coulomb interaction (ongoing)
- higher #EFT orders (ongoing work on N^2LO)
- scattering in higher partial waves
- inelastic scattering, nuclear reactions
- ${}^{4}\mathrm{He}(0^{+})$ resonance, binding of ${}^{6}\mathrm{Li}$ and ${}^{6}\mathrm{He}$ at higher orders

#EFT potential at LO and NLO

Leading order potential (3 LECs) :

$$V_{\lambda}^{(\text{LO})} = \sum_{i < j} \left[C_0^{(0)}(\lambda) P_{ij}^{T=1,S=0} + C_1^{(0)}(\lambda) P_{ij}^{T=0,S=1} \right] e^{-\frac{\lambda^2}{4} r_{ij}^2} \\ + \frac{D_0^{(0)}(\lambda)}{D_0^0} \sum_{i < j < k} \mathcal{Q}_{ijk}^{T=1/2,S=1/2} \sum_{\text{cyc}} e^{-\frac{\lambda^2}{4} (\mathbf{r}_{ij}^2 + \mathbf{r}_{jk}^2)}$$

Next-to-leading order potential (6 LECs) :

$$\begin{split} V_{\lambda}^{(\mathrm{NLO})} &= \sum_{i < j} \left[C_{0}^{(1)}(\lambda) P_{ij}^{T=1,S=0} + C_{1}^{(1)}(\lambda) P_{ij}^{T=0,S=1} \right] e^{-\frac{\lambda^{2}}{4} r_{ij}^{2}} \\ &+ \sum_{i < j} \left[C_{2}^{(1)}(\lambda) P_{ij}^{T=1,S=0} + C_{3}^{(1)}(\lambda) P_{ij}^{T=0,S=1} \right] (\mathbf{k}^{2} + \mathbf{q}^{2}) e^{-\frac{\lambda^{2}}{4} r_{ij}^{2}} \\ &+ D_{0}^{(1)}(\lambda) \sum_{i < j < k} Q_{ijk}^{T=1/2,S=1/2} \sum_{cyc} e^{-\frac{\lambda^{2}}{4} (r_{ij}^{2} + r_{jk}^{2} + r_{jk}^{2})} \\ &+ E_{0}^{(1)}(\lambda) \sum_{i < j < k < l} Q_{ijkl}^{T=0,S=0} e^{-\frac{\lambda^{2}}{4} (r_{ij}^{2} + r_{ik}^{2} + r_{jk}^{2} + r_{jl}^{2} + r_{kl}^{2})} \end{split}$$

BERW formula

ightarrow assumption of short-range potential with range $R << b_{
m HO} = \sqrt{rac{1}{\mu\omega}}$

Bush formula

$$-\sqrt{4\mu\omega} \frac{\Gamma(3/4 - \epsilon_n/2\omega)}{\Gamma(1/4 - \epsilon_n/2\omega)} = k \operatorname{cotg}(\delta), \quad k = \sqrt{2\mu\epsilon_n}$$

(A. Suzuki, Phys. Rev. A 80 (2009) 033601, T. Bush Found. of Phys. 28 (1998) 4)

LO **#EFT** calculations:

$$H(\omega) = T_k + V_{\lambda}^{(\text{LO})} + V_{\text{HO}}(\omega) \longrightarrow H(\omega)\psi_n = \epsilon_n \psi_n \stackrel{\text{BERW}}{\longrightarrow} k \cot(\delta)$$

NLO **#EFT** calculations:

 $\epsilon_n^{(\text{NLO})} = \epsilon_n + \langle \psi_n | V_{\lambda}^{(\text{NLO})} | \psi_n \rangle \quad \stackrel{\text{BERW}}{\longrightarrow} \quad k \operatorname{cotg}(\delta^{(\text{NLO})})$

Stochastic Variational Method

(K. Varga et al., NPA571 (1994) 447, K. Varga, Y. Suzuki, PRC52 (1995) 2885)

$$H\psi = E\psi, \qquad \psi = \sum_{i=0}^{N} c_i \varphi^i$$

Basis states

• antisymmetrized correlated Gaussians (assuming L=0)

$$\varphi_{SM_STM_T}^i(\mathbf{x}, A_i) = \mathcal{A}\{G_{A_i}(\mathbf{x})\chi_{SM_S}\eta_{TM_T}\}, \quad G_{A_i}(\mathbf{x}) = e^{-\frac{1}{2}\mathbf{x}A_i\mathbf{x}}$$

• Jacobi coordinates **x**, A_i symmetric positive definite matrix of $\frac{N(N-1)}{2}$ real parameters, spin χ_{SM_S} and isospin η_{TM_T} parts

optimization of variational basis in a random trial and error procedure

$n + {}^{4}\text{He}$ scattering

