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“Perturbative” calculation of observables

Expansion parameter: (soft scale)/(hard scale)

Bare parameters of the Lagrangian
Renormalization:

power counting for
renormalized quantities
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Implicit renormalization

Explicit renormalization

Identify each term individually, or at least prove this is possible

fit bare

(re)fit bare

(re)fit bare

Justifies theoretical error estimation!

bare =renormalized + counter term 
(absorb divergent and power counting breaking contributions)

Balancing at the border of phenomenology



Power counting for NN chiral EFT: LO and NLO
Weinberg, S., NPB363, 3 (1991) 
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Regulator: 
finite (of the order of the breakdowen scale) 

cutoff scheme

G. P. Lepage, nucl-th/9706029
  J. Gegelia, JPG25, 1681 (1999)

Power-counting violating contributions from large loop momenta:

Expectation: power-counting breaking contributions 
can be absorbed by lower order contact (counter) terms

Expectation:

We cannot absorb all positive powers of Λ by counter terms. 
Absorb only those that are not compensated by the inverse powers of Λb 

Infinite number of divergencies of different order



Effective Lagrangian and 
the regulator as the renormalization scheme

Λ specifies the non-perturbative regime (the number of bound states )

The remaining Λ-dependence is removed perturbatively by expansion in           

contains

regulated potential

Lagrangian and amplitude are formally cutoff (regulator) independent

Λ plays a role of the renormalization scale

For locally regulated long-range potentials,              can be expanded in 1/Λ
and absorbed by contact interactions, 
or can be kept explicit to access lower values of the cutoff

-RG-invariance



Two approaches to renormalization

Analogous to choosing the optimal renormalization scale µ in QED 
or QCD (Brodsky, Lepage, Mackenzie, PRD28 (1), 228 (1983))  

This requirement seemingly cannot be fulfilled (exceptional cutoffs)

 H. W. Hammer, S. König, U. van Kolck, 
 Rev. Mod. Phys. 92(2), 025004 (2020)

 H. Grießhammer, EPJA 56 (4), 118 (2020)

Finite cutoff approach: find the cutoff window where 
renormalization and perturbative expansion work with the minimal number 
of contact interactions: naive dimensional analysis + possible promotions

“RG-invariant” scheme: varying the cutoff Λb<Λ<∞, 
determine the necessary number of the contact 
interactions by means of numerical checks

Practically efficient and consistent with principles of EFTs

-existence of a Λ→∞ limit

AG, E.Epelbaum, PRC107, 034001 (2023)

R. Peng, B. Long,  F. Xu, 2407.08342 (2024)



Technicalities of renormalization:
estimating integrals using bounds on potentials

V
0

LO potential:

NLO potential:

2-nucleon Green’s function:

Integral converges at

V
2

(regulator)

Renormalization → Subtraction → Counter term



Structure of the interaction in chiral EFT  

Interaction obtained from chiral EFT:

AG, E.Epelbaum, PRC 105, 024001 (2022)

Subtractions:

Large loop momenta are suppressed

Renormalizability



Iterations of V0
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Renormalized subdiagram:

Integral converges at

One more subtraction: the same form of a counter term

General case: -Perturbative (convergent) sum

AG, E.Epelbaum, PRC 105, 024001 (2022)



Counterexample:
Non-local separable long-range interaction 

AG, E.Epelbaum, N.Jacobi, in preparation

Long-range power-counting-breaking terms

Nonrenormalizability (in terms of local counter terms)

two-pion exchange



Renormalization in the non-perturbative regime
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The series for R(TR(T
22

[m,n][m,n]) )  can be summed explicitly:

AG, E.Epelbaum, PRC107, 044002 (2023)



Using Fredholm formula to match to 
the perturbative regime

Convergent series in V0 :

The same for the counter terms:

-Fredholm determinant



Renormalizability constraints



Renormalizability constraints

Can be small, or ~0



Renormalizability constraints

Can be small, or ~0

Renormalizability constraints on (the short-range part of ) the  LO potential.
The simplest formulation: LECs must be of natural size (If              ).

Constraints on the choice of the cutoff are not driven by data!

For realistic interactions this requirement is fulfilled for 450 MeV<Λ<750 MeV
∆Λ~2Mπ~Q, not unnaturally small



Failure of renormalizability for 

Sharp cutoff, harder than smooth regulators
0.7 GeV → above 1 GeV

Tlab=130MeV

AG, E.Epelbaum, PRC107, 034001 (2023)



(In)Consistency of Weinberg power counting
and its modifications

Large cutoff arguments do not work for the finite cutoff scheme:
Divergencies →  positive (uncompensated) power powers of Λ

1S0,3P0 partial waves: formally higher order contributions appear large 
→ promote to LO to make the scheme more efficient
→ more reliable error estimate

Mismatch of ultraviolet divergencies and infrared power counting is typicall:
covariant ChPT in the 1-nucleon sector, especially ∆-full
→scheme dependence as a higher order effect

Consistent in the EFT sense: systematic expansion preserving symmetries



Explicit renormalization of an EFT provides a justified systematic 
expansion of observables and theoretical error estimate

Summary

(1) Locality of the long-range forces

(2) Cutoff of the order of the hard scale 

(3) Naturalness of the counter terms

Sufficient conditions for renormalizability:

Outlook
Extend the analysis to other channels (e.g. currents) 
and higher orders
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