
NRW-FAIR
Netzwerk

Long-range forces in a finite volume

Akaki Rusetsky, University of Bonn
in coll with: R. Bubna, H.-W. Hammer, B.-L. Hoid, F. Müller, J.-Y. Pang and J.-J. Wu

Chiral Dynamics, Bochum, 27 August 2024

1 / 21



Plan

Introduction: where are long-range forces important?

How does one deal with long-range forces on the lattice?

EFT and the modified effective range expansion

Modified Lüscher equation

Analysis of data in different approaches
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Why long-range forces?
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Left hand cut close to threshold: the energy levels below the left-hand branch
point cannot be used

Slowly converging partial-wave expansion: expecting strong admixture of higher
partial waves in the quantization condition (Meng & Epelbaum, 2021)

Exponentially suppressed corrections still sizable
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Left-hand cut: case of NN scattering
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Left-hand cut: −∞ < s ≤ (2mN)
2 −M2

π︸ ︷︷ ︸
=(1875MeV)2

; right-hand cut: (2mN)
2︸ ︷︷ ︸

=(1880MeV)2

≤ s < +∞

Phase shift real below the left-hand branch point?
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Plane-wave basis (Meng & Epelbaum, 2021)

Describe the system in terms of the parameters of the effective Lagrangian which,
by definition, encode only faraway singularities

V (p,q) = −
(

gA
2Fπ

)2 (σ1 · k)(σ2 · k)
M2

π + k2
+ CS +

C1

4
(p + q)2 + C2k2 + · · ·

k = p − q

Work in the plane wave basis; do not resort to the partial-wave expansion

For the NN scattering, it was shown that, at the physical quark masses, the
partial-wave mixing is sizable (Meng & Epelbaum, 2021)

A consistent fit of the DD∗ scattering phases to lattice data in the left-hand cut
region has been performed (Meng et al., 2023)
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Splitting long- and short-range interactions (Hansen & Raposo, 2023)

Short-range interactions are re-summed to all orders in the presence of the
long-range potential, restricted on-shell

Fit short-range part to the scattering data, get full amplitude through solving
integral equations

Involves the on-shell short-range amplitude

Quantization condition is written down both in the plane-wave basis and the
partial-wave basis
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Applying three-particle formalism (Hansen et al., 2024)

The limit of a stable D∗ in the DD∗ molecule (plane wave basis is used):

M = (G + H) +
1

L3

∑
(G + H)τM

G → one pion exchange , H → short-range force

τ = (p∗ cot δ(p∗)− JL(p
∗))−1 = Z (p∗)

(
p∗2 − p∗d

2
)−1

s∗ = (P − qD)
2 ≤ (E −mD)

2 in the CM frame

Two-particle QC for a stable D∗, in the vicinity of the DD∗ bound state

Dπ channel opens at larger values of E ≥ 2mD +Mπ, still close to mD∗ +mD

Differences between two- and three-particle frameworks may indicate the
importance of the internal structure of D∗ in the analysis of data
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Alternative approaches

Using Lüscher equation plus EFT with long-range force in the infinite volume
above the left-hand cut (Collins et al., 2024)

Exponentially suppressed corrections might still be essential just above the left-hand
cut.

HAL QCD approach (Lyu et al., 2023)
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Modified effective range expansion (van Haeringen & Kok, 1982)

Lüscher equation is based on the assumption R ∼ M−1 ≪ L
. . . violated by a long-range force with a small M!

Splitting of the potential

V (r) = VL(r)︸ ︷︷ ︸
known, local

+ VS(r)︸ ︷︷ ︸
unknown

Effective-range expansion: very small radius of convergence

q2ℓ+1 cot δℓ(q) = − 1

aℓ
+

1

2
rℓq

2 + O(q4)

Define modified effective-range function:

KM
ℓ (q2) = Mℓ(q) +

q2ℓ+1

|fℓ(q)|2
(cot(δℓ(q)− σℓ(q))− i)
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Jost functions and all that

Jost function for the long-range interaction:

fℓ(q) =
qℓe−iℓπ/2(2ℓ+ 1)

(2ℓ+ 1)!!
lim
r→0

r ℓfℓ(q, r)

The function Mℓ(q):

Mℓ(q) =
1

ℓ!

(
− iq

2

)ℓ

lim
r→0

d2ℓ+1

dr2ℓ+1

fℓ(q, r)

fℓ(q)

Larger radius of convergence for the modified effective-range function:

KM
ℓ (q2) = − 1

ãℓ
+

1

2
r̃ℓq

2 + O(q4)

Relation between KM
ℓ (q2) and the full phase δℓ(q) is algebraic
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Requirements on the potential

The long-range potential VL(r) is local

The long-range potential must be superregular∣∣∣ lim
r→0

r−2ℓVL(r)
∣∣∣ < ∞

The short-range potential is a low-energy polynomial:

⟨p|VS |q⟩ = C 00
0 + 3C 00

1 pq + C 10
0 (p2 + q2) + · · ·
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The Yukawa potential

Pauli-Villars regularization: VL(r) =
ge−Mπr

r
−

2ℓ+1∑
i=1

ci
ge−Mi r

r
!

Mi ∼ M (heavy scale) , Mk
π =

2ℓ+1∑
i=1

ciM
k
i for k = 0, · · · , 2ℓ

Sharp cutoff: VL(r) = θ(r − r0)
ge−Mπr

r
!

Warning for the smooth-cutoff-lovers: for example,

VL(r) = exp

(
− 1

Λr

)
ge−Mπr

r %

. . . is not acceptable: V reg
L (r)− VL(r) is not a low-energy polynomial with the

coefficients of natural size!
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Scattering on two potentials: the EFT framework

T = TL + (1 + TLG0)TS(1 + G0TL)

TS = VS + VSGLTS

The Green function with the long-range potential only: GL = G0 + G0VLGL

GL = + + + · · ·
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The loop with infinite number of long-range insertions

〈GL〉 = + + + · · ·

⟨r |GL(q
2
0)|r ′⟩ = 4π

∑
ℓm

Yℓm(r)G̃ ℓ
L(r , r

′; q20)Y
∗
ℓm(r

′) , ⟨G ℓ
L(q

2
0)⟩ = lim

r ,r ′→0
G ℓ
L(r , r

′; q20)

Relation to the Jost functions:

⟨G ℓ
L(q

2
0)⟩ =

1

4π((2ℓ+ 1)!!)2
Mℓ(q0) + real low-energy polynomial in q20︸ ︷︷ ︸

renormalization prescription
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Modified effective range expansion: EFT framework

Lowest order: ⟨p|VS |q⟩ = C 00
0

4π/C 00
0︸ ︷︷ ︸

=KM
0 (q20) at lowest order

= M0(q0) +
q0

|f0(q0)|2
(cot(δ0(q0)− σ0(q0))− i)

Higher orders:

The quantity KM
0 (q20) is a low-energy polynomial in q20 , expressed in terms of

couplings C 00
0 ,C 00

1 ,C 10
0 , . . .

In the proof, the locality of VL(r) plays crucial role. The proof is not valid for a
general, non-local potential

15 / 21



Modified Lüscher equation

det Aℓm,ℓ′m′ = 0 , Aℓm,ℓ′m′ = δℓℓ′δmm′KM
ℓ (q20)− Hℓm,ℓ′m′(q0)

Modified Lüscher zeta-function, finite volume:

H = + + + · · ·

Lüscher zeta-function

Hℓm,ℓ′m′(q0) =
4π

L6

∑
p,q

Y ∗
ℓm(p)⟨p|GL(q

2
0)|q⟩Yℓ′m′(q)

Taking into account the renormalization prescription:

Hℓm,ℓ′m′(q0) = (Hℓm,ℓ′m′(q0)− H∞
ℓm,ℓ′m′(q0)) +

1

4π
δℓℓ′δmm′Mℓ(q0)
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Shift of the energy levels due to VL only
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Modified Lüscher function (S-waves only)
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Perturbative shift of the ground-state energy (S-wave only)
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Analysis of data

Partial-wave mixing in a finite volume is expected to be significantly reduced

For a single partial wave:

Energy level → scattering phase at a given energy

A parameterization of phase shifts in a restricted energy interval is needed, if
partial-wave mixing is included.

Solution in the plane wave basis:

Conceptually, very straightforward and transparent

Parameterization of the infinite-volume amplitude in terms of the effective
couplings is assumed in the whole energy range

Does this constitute to a disadvantage? Not necessarily. . .
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Conclusions, outlook

A novel quantization condition in the presence of the long-range forces has been
proposed

Solves the left-hand cut problem
Reduces partial-wave mixing
Relates the energy level to the scattering phase(s) at the same energy

Three-body → two-body description for stable dimers

Long-range force in the three-body quantization condition: e.g., NN in NNN

Long-range three-body force?

Electromagnetic interactions: is the non-perturbative resummation of the
Coulomb photon exchanges needed/possible?
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