Anthropic Considerations for Big Bang Nucleosynthesis Chiral Dynamics 2024

Helen Meyer

with Ulf-G. Meißner and Bernard Metsch

29.08.2024

Helmholtz-Institut für Strahlen- und Kernphysik

Helen Meyer with Ulf-G. Meißner and Bernard Metsch Anthropic Considerations for Big Bang Nucleosynthesis

Introduction ●0			
Motivation			

- Fundamental constants: show up in every discipline of science
- We know them to precisions given units of parts per 10⁹¹

permeability of free space	μ_0	$4\pi \times 10^{-7} \ {\rm N} \ {\rm A}^{-2} = 12.566 \ 370 \ 614 \ \ldots \ \times 10^{-7} \ {\rm N} \ {\rm A}^{-2}$	exact
fine-structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	$7.297\ 352\ 5664(17) \times 10^{-3} = 1/137.035\ 999\ 139(31)^\dagger$	0.23, 0.23
classical electron radius	$r_e = e^2/4\pi\epsilon_0 m_e c^2$	2.817 940 3227(19)×10 ⁻¹⁵ m	0.68
$(e^{-} \text{ Compton wavelength})/2\pi$	$\lambda_e = \hbar/m_e c = r_e \alpha^{-1}$	$3.861\ 592\ 6764(18) \times 10^{-13}\ m$	0.45
Stefan-Boltzmann constant	$\sigma = \pi^2 k^4 / 60\hbar^3 c^2$	$5.670\ 367(13) \times 10^{-8}\ W\ m^{-2}\ K^{-4}$	2300
Fermi coupling constant ^{**}	$G_F/(\hbar c)^3$	$1.166~378~7(6) \times 10^{-5} { m GeV}^{-2}$	510
weak-mixing angle	$\sin^2 \hat{\theta}(M_Z)$ (MS)	0.231 22(4) ^{††}	1.7×10^5
W [±] hoson mass	10117	$80.379(12) \text{ GeV}/c^2$	1.5×10^{9}

 Some theories predict changes in these constants over cosmological time scales

Are fundamental constants really constant?²

• How can we test this? \Rightarrow Laboratory: Big Bang Nucleosynthesis (BBN)³

¹ PDG: Workman et al., 2022, ² Dirac, 1973 and many others, ³ Olive, Steigman, and Walker, 2000; locco et al., 2009; Cyburt et al.,

2016; Pitrou et al., 2018a

Introduction			

This talk

In this work: studied BBN under variation of

- the electromagnetic coupling constant α^1
 - also using results from Halo EFT calculations²
- the Higgs vacuum expectation value (VEV) v³

Goal: find a bound on these variations through comparing calculations with experimental values for light element abundances

: Source: ChatGPT

¹ Meißner, Metsch, HM 2023; Bergström, Iguri, Rubenstein, 1999; Nollett, Lopez, 2002; Dent, Stern, Wetterich, 2007; Coc et al., 2007;

² Meißner, Metsch , HM 2024; Hammer, Ji, Phillips, 2017; ³ Meißner, HM 2024; Burns et al., 2024

Big Bang Nucleosynthesis ●O		

Introducing BBN – Evolution of Abundances

- abundance Y_i = n_i/n_b, with n_i density of nucleus i and n_b total baryon density
- Need to solve system of rate equations

$$\begin{split} \dot{Y}_{i} \supset &-Y_{i} \Gamma_{i \rightarrow \dots} + Y_{j} \Gamma_{j \rightarrow i + \dots} \\ &+ Y_{k} Y_{l} \Gamma_{kl \rightarrow ij} - Y_{i} Y_{j} \Gamma_{ij \rightarrow kl} \end{split}$$

 Used five different codes¹ to get an estimate of systematical errors

¹ PRIMAT: Pitrou et al., 2018b, AlterBBN: Arbey et al., 2020, PArthENOPE: Gariazzo et al., 2022, NUC123: Kawano, 1992 and PRyMordial: Burns, Tait, and Valli, 2023

Big Bang Nucleosynthesis ○●		

Introducing BBN – The Timescales

■ | *t* ≤ 1 s |

Weak $n \leftrightarrow p$ reactions ¹²⁷ number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference ¹²⁷ at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay

: produced by PRIMAT

Big Bang Nucleosynthesis ○●		

³He ⁴He

⁶l i 71 i

Introducing BBN – The Timescales

 $| t \leq 1 s$

Weak $n \leftrightarrow p$ reactions number density ratio $\frac{n_n}{n_n} = e^{-Q_n/T}$, Q_n : mass difference \square at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay $t = 1 \min$

Deuterium bottleneck: $n + p \rightarrow d + \gamma$ efficient

: produced by PRIMAT

Big Bang Nucleosynthesis ○●		

He

⁴He

⁶l i

Introducing BBN – The Timescales

: produced by PRIMAT

 $|t| \le 1 s$

Weak $n \leftrightarrow p$ reactions number density ratio $\frac{n_n}{n_n} = e^{-Q_n/T}$, Q_n : mass difference \square at 1 s or $T \approx 1 \,\text{MeV}$: freeze-out and free neutron decay $t = 1 \min$

Deuterium bottleneck: $n + p \rightarrow d + \gamma$ efficient

 $| t \lesssim 3 \min$

Fusion of light elements (up to ^{7}Be)

	Variation of α $\bigcirc 00$		

Variation of α – What to consider

■ $n \leftrightarrow p$ and β -decay rates: final (initial) state interactions between charged particles

kТ

Indirect effects: binding energies² and Q_n (QED contribution)³

$$\Delta Q_n = Q_n^{ ext{QED}} \cdot \delta lpha = -0.58(16) \, ext{MeV} \cdot \delta lpha$$

 1 Blatt and Weisskopf, 1979; 2 Elhatisari et al., 2024; 3 Gasser, Leutwyler, and Rusetsky, 2021

Energy

	Variation of α O \bigcirc O		

Experimental constraints

■ PDG¹: reliable measurements for ⁴He, *d* and ⁷Li (But: Lithium problem²)

- 5 codes give similar results

• Only α -variation of $|\delta \alpha| < 1.8\%$ is consistent with experiment

¹ Workman et al., 2022; ² Fields, 2011

Helen Mever

	Variation of α		

Halo Effective Field Theory (EFT)

Biggest source of uncertainty: reaction rates and cross sections

- \Rightarrow Need theoretical predictions
 - So far: only pionless EFT for $n + p \rightarrow d + \gamma^{1}$
 - Now: include Halo EFT² rates for $n + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li} + \gamma {}^{3}$ $p + {}^{7}\text{Be} \rightarrow {}^{8}\text{B} + \gamma {}^{4}$ $p + {}^{7}\text{He} \rightarrow {}^{7}\text{Li} + \gamma \text{ and}$ ${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma {}^{5}$

 1 Rupak, 2000; 2 review: Hammer, Ji, Phillips, 2017; 3 Fernando, Higa, Rupak 2012; Higa, Premarathna, Rupak, 2021; 4 Higa, Premarathna, Rupak, 2022;

⁵ Higa, Rupak, Vaghani, 2018; Premarathna, Rupak, 2020

: Meißner, Metsch, HM 2024: in print (EPJA)

 $^{7}Li + ^{7}Be$ abundance diverges?

	Variation of <i>v</i> ●00	

Higgs VEV Variation – What to consider

- QCD scale $\Lambda_{\rm QCD} \propto (1 + \delta v)^{0.251}$
- Fermi constant ${\it G_F} \propto (1+\delta v)^{-2}$
- Change of electron and quark masses $\Rightarrow M_{\pi}$ through Gell-Mann-Oakes-Renner relation
- $\rightarrow Q_n (QCD part)^2$
- → Deuteron binding energy (right)
- → nucleon mass and axial-vector coupling (from Lattice QCD or ChPT)

Remember Ulf-G. Meißner's talk?

 1 Burns et al., 2024, 2 Gasser, Leutwyler, and Rusetsky, 2021, 3 Baru et al., 2015, 2016

Helen Meyer

	Variation of <i>v</i> ○●○	

 $n + p \rightarrow d + \gamma$

¹ Rupak, 2000; ² Burns et al., 2024

	Variation of <i>v</i> 00●	

Experimental constraints

: PDG: Workman et al., 2022 ; EMPRESS: Matsumoto et al., 2022

• found more stringent 2σ -bound from deuterium abundance:

$$-0.5\% \le \delta v \le -0.1\%$$

Helen Meyer Anthropic Considerations for Big Bang Nucleosy

		Conclusion	

To summarize...

- simulated Big Bang Nucleosynthesis with
 5 different codes as laboratory
- considered variation of fundamental physical constants and found
 - for the fine-structure constant (1σ)

$$|\delta \alpha| < 1.8\%$$

for the Higgs VEV (2σ)

$$-0.5\% \leq \delta \nu \leq -0.1\%$$

to be consistent with measurementsNow: Are they really constant?

		Outlook ●O

Outlook

- \blacksquare Combined analysis of $\alpha\text{-}$ and v- or $\alpha\text{-}$ and quark mass variations
- Quantitative and detailed error estimations
- Main source of uncertainty: reaction cross sections and rates
- \Rightarrow need more theoretical predictions
 - 🖌 Halo EFT
- Remember Dean Lee's talk?
 - \rightarrow contributions to nuclear binding energies (already used for α -variation)
 - $\rightarrow\,$ ab initio calculation of scattering parameters and rates: deuteron-deuteron reactions in the making
 - \rightarrow can directly vary fundamental parameters: no need for approximation

: Source : ChatGPT

		Outlook ●O

Outlook

- \blacksquare Combined analysis of $\alpha\text{-}$ and v- or $\alpha\text{-}$ and quark mass variations
- Quantitative and detailed error estimations
- Main source of uncertainty: reaction cross sections and rates
- \Rightarrow need more theoretical predictions
 - 🖌 Halo EFT
- Remember Dean Lee's talk?
 - \rightarrow contributions to nuclear binding energies (already used for α -variation)
 - $\rightarrow\,$ ab initio calculation of scattering parameters and rates: deuteron-deuteron reactions in the making
 - $\rightarrow\,$ can directly vary fundamental parameters: no need for approximation

: Source : ChatGPT

Thank you for your attention!

		Outlook O⊙

Nuclear Reaction Rates – Coulomb Barrier

$$\Gamma_{ab\to cd}(T) = N_A \langle \sigma v \rangle \propto \int_0^\infty \mathrm{d}E \, \sigma_{ab\to cd}(E) \cdot E \cdot e^{-\frac{E}{k_B T}}, \quad E = \frac{1}{2} \mu_{ab} v^2$$

(1) Coulomb Barrier

Cross section is proportional to penetration factor [Blatt and Weisskopf, 1979]

$$\sigma \propto v_0 = rac{2\pi\eta}{e^{2\pi\eta}-1}\,,$$

with Sommerfeld parameter

$$\eta = \frac{Z_a Z_b \alpha c}{\hbar v} = \frac{1}{2\pi} \sqrt{E_G/E},$$

and Gamow-energy

$$E_G = 2\mu_{ab}c^2\pi^2 Z_a^2 Z_b^2 \alpha^2, \quad \mu_{ab} = \frac{m_a m_b}{m_a + m_b}$$

Helen Meyer

 $\alpha\text{-}\mathsf{Dependence}$ of Reaction and Decay Rates $\texttt{O} \textcircled{} \texttt{O} \texttt$

Nuclear Reaction Rates – Radiative Capture

(2) Radiative capture reactions

- Coupling $\propto e \Rightarrow$ Cross section $\sigma \propto \alpha \propto e^2$
- External capture processes [Christy and Duck, 1961]: parameterized in $f(\delta \alpha)$ [Nollett and Lopez, 2002]
- Assume dipole dominance
- For some reactions: Halo EFT cross sections ⇒ work in progress

 α -dependence of cross section ($q_{\gamma} = 1$ for radiative capture, zero else)

$$\sigma(\alpha, E) \propto \left(\frac{\sqrt{E_{G}^{\text{in}}/E}}{e^{\sqrt{E_{G}^{\text{in}}/E}} - 1}\right) \cdot \left(\frac{\sqrt{E_{G}^{\text{out}}/(E+Q)}}{e^{\sqrt{E_{G}^{\text{out}}/(E+Q)}} - 1}\right) \cdot (\alpha f(\delta \alpha))^{q_{\gamma}}$$

$$Q = m_a + m_b - m_c - m_d$$

 $\alpha\text{-}\mathsf{Dependence}$ of Reaction and Decay Rates $\texttt{OO} \bullet \texttt{OO} \texttt{O}$

Indirect Influence of α OO Results 000000

Weak Rates – Fermi Function

 β -decay rate (assume $|M_{fi}|^2$ to be *p*-independent) [Segrè, 1964]:

$$\lambda = \frac{g^2 |M_{fi}|^2}{2\pi^3 c^3 \hbar^7} \underbrace{\int_0^{p_{e,\max}} \left(W - \sqrt{m_e^2 c^4 + p_e^2 c^2}\right)^2 F(Z,\alpha,p_e) p_e^2 \,\mathrm{d}p_e}_{= l(\alpha,Q)}$$

$$p_{e,\max} = \frac{1}{c} \sqrt{W^2 - m_e^2 c^4}, W \approx M_a - M_b = Q$$

Fermi function (for $Z\alpha \ll 1$):
 $F(\pm Z, \alpha, \epsilon_e) \approx \frac{\pm 2\pi\nu}{1 - \exp(\mp 2\pi\nu)}, \quad \nu \equiv \frac{Z\alpha\epsilon_e}{\sqrt{\epsilon_e^2 - 1}}$

Then:

$$\lambda(\alpha) = \lambda(\alpha_0) \frac{I(\alpha, Q)}{I(\alpha_0, Q)}$$

Helen Meyer

Indirect Influence of α

$n \leftrightarrow p$ Rates

Free neutron decay: lifetime

$$\tau_n(\alpha) = \tau_n(\alpha_0) \frac{I(\alpha_0, Q)}{I(\alpha, Q)}$$

But: Ignored Fermi-Dirac distribution of neutrino and electron

 \Rightarrow temperature dependence in α -variation for high temperatures

Nuclear Reaction Rates – $n + p \rightarrow d + \gamma$

Some corrections due to α variation are energy-dependent

 \Rightarrow need reaction cross section!

For $n + p \rightarrow d + \gamma$:

- Pionless EFT (N⁴LO) approach by Rupak, 2000
- $\sigma(n + p \rightarrow d + \gamma)$ depends linearly on α

Other reaction cross section need to be parameterized by fitting to data EXFOR database

Indirect Influence of α 00

Nuclear Reaction Rates - Leading Reactions

This work ; PRIMAT ; AlterBBN ; PArthENoPE; NUC123 ; NACRE II ;
(PRyMordial uses the PRIMAT rates)

Helen Meyer

 $\alpha\text{-Dependence}$ of Reaction and Decay Rates 000000

Indirect Influence of α

Results 000000

Indirect Effects - Binding energies [Meißner and Metsch, 2022]

Coulomb interaction between protons in nucleus

 \Rightarrow Electromagnetic contribution to binding energy [Elhatisari et al., 2024] Change in *Q*-value:

$$\Delta Q = \frac{\delta \alpha}{\left(-\sum_{i} B_{C}^{i} + \sum_{j} B_{C}^{j}\right)}$$

 $\alpha\text{-Dependence}$ of Reaction and Decay Rates 000000

Indirect Influence of α

Indirect Effects - Binding energies [Meißner and Metsch, 2022]

Coulomb interaction between protons in nucleus

 \Rightarrow Electromagnetic contribution to binding energy [Elhatisari et al., 2024] Change in *Q*-value:

$$\Delta Q = \frac{\delta \alpha}{\delta \alpha} \left(-\sum_{i} B_{C}^{i} + \sum_{j} B_{C}^{j} \right)$$

Nuclear reaction cross sections ($p_{\gamma}=3, q_{\gamma}=1$ for radiative capture, $p_{\gamma}=1/2, q_{\gamma}=0$ else)

$$\sigma(E,\alpha) \propto \underbrace{(E+Q(\alpha))^{p_{\gamma}}}_{\text{phase space}} \alpha^{q_{\gamma}} \frac{\sqrt{E_{G}^{\text{in}}(\alpha)/E}}{\exp\left(\sqrt{E_{G}^{\text{in}}(\alpha)/E}\right) - 1} \frac{\sqrt{E_{G}^{\text{out}}(\alpha)/(E+Q(\alpha))}}{\exp\left(\sqrt{E_{G}^{\text{out}}(\alpha)/(E+Q(\alpha))}\right) - 1}$$

Indirect Effects - Neutron-proton mass difference

 $Q_n = m_n - m_p$ has QED contribution [Gasser, Leutwyler, and Rusetsky, 2021]:

$$\Rightarrow \Delta Q_n = Q_n^{\text{QED}} \cdot \delta \alpha = -0.58(16) \text{ MeV} \cdot \delta \alpha$$

Affects

- weak $n \leftrightarrow p$ rates
- Q-values of β -decays
- $m_N = (m_n + m_p)/2$ appearing in $n + p \rightarrow d + \gamma$ cross section? \rightarrow neglect α -dependence!

Results

Baryon-to-photon ratio $\eta = 6.14 \times 10^{-10}$; neutron lifetime $\tau_n(\alpha_0) = 879.4 \text{ s}$ [PDG] Parameter fit

$$\frac{Y(\alpha) - Y(\alpha_0)}{Y(\alpha_0)} = a \cdot \frac{\Delta \alpha}{\alpha_0} + b \cdot \left(\frac{\Delta \alpha}{\alpha_0}\right)^2$$

Main results see Meißner, Metsch, and Meyer, 2023:

- For most elements: change in nuclear reaction rates biggest effect.
- ⁴He indeed very sensitive to ΔQ_n .
- Lithium Problem

Differences to existing literature:

- \blacksquare Updated experimental values for masses, physical constants etc., more recent calculation of $Q_n^{\rm QED}$
- Different reaction rates due to parameterization of cross section.
- Calculating the corrections exactly or using temperature-dependent approximations.

 $\alpha\text{-Dependence}$ of Reaction and Decay Rates 000000

Indirect Influence of α OO

Results

 α -Dependence of Reaction and Decay Rates 000000 ndirect Influence of α

Results 000000

Quark mass dependence of scattering parameters

Measurement of Primordial Abundances

Deuterium d:

- Almost completely destroyed in stars
- Observe high red-shift, low-metallicity systems

Helium-4⁴He:

- \blacksquare Recombination lines of ${\rm He}$ and ${\rm H}$ in metal-poor extra-galactic HII regions
- Metal Production in stars positively correlated to stellar $^{4}\mathrm{He}$ contribution \rightarrow Primordial abundance found by extrapolation to zero metallicity Lithium-7 $^{7}\mathrm{Li}$:
 - Observe stars in the galactic halo with very low metallicities
 - ⁷Li dominant over ⁶Li
 - Lithium problem¹: theoretical prediction three times higher

¹LithiumProblem

Indirect Influence of α OO Results 0000●0

Temperature-Dependent Approximation

Charged particle reactions

- Define $S(E) = \sigma(E) E e^{\sqrt{E_G^{\text{in}}/E}}$ and assume $S \approx \text{const.}$
- Reaction rate

$$\Gamma = \int \mathrm{d}E \, \frac{S(E)}{E} e^{-\sqrt{E_G^{\mathrm{in}/E}}} E e^{E/(k_B T)}$$

E at maximum of integrand

$$E
ightarrow \overline{E}_c = \left(rac{k_B T}{2}
ight)^{rac{2}{3}} (E_G^{\mathrm{in}})^{rac{1}{3}}.$$

Neutron induced reactions

- Define $R(E) = \sigma(E)\sqrt{E}$ and assume $R \approx \text{const.}$
- Reaction rate

$$\Gamma = \int \mathrm{d}E \, \frac{R(E)}{\sqrt{E}} E e^{E/(k_B T)}$$

• *E* at maximum of integrand

$$E
ightarrowar{E}_{\gamma}=rac{1}{2}k_{B}T$$

Indirect Influence of α OO

Results 000000

Reaction Rates for Approximation

Reaction rates for $\delta \alpha = 0, \pm 10\%$ calculated exactly (blue) and with temperature-dependent approximation (red)