Roy-Steiner-equation analysis of pion-nucleon scattering and nucleon resonances

J. Ruiz de Elvira

Complutense University of Madrid and IPARCOS

In collaboration with:

M. Hoferichter, B. Kubis, U.-G. Meißner.

11th Workshop on Chiral Dynamics, Bochum, August 26th, 2024

Dispersive analysis based on Roy-Steiner equations

- Roy-Steiner solutions: phase-shift
- σ-term and comparison to lattice results
- ChPT matching and chiral low-energy constants

- Phys. Rev. Lett. 115 (2015) 092301, Phys. Lett. B 760 (2016) 74-78, J. Phys. G 45 (2018) 2, 024001, Phys. Lett. B 843 (2023) 138001
- Phys. Rev. Lett. 115 (2015) 19, 192301, Phys. Lett. B 770 (2017) 27-34 (with D. Siemens, E. Epelbaum, and H. Krebs)

Image: Image:

3 × 4 3 ×

nucleon resonances

Phys. Lett. B 853 (2024) 138698

Phys. Rept. 625 (2016) 1-88

• simplest process for chiral pion interaction with nucleons

• leading order $\mathcal{O}(p) = \mathcal{O}(M_{\pi})$ free-parameter chiral prediction

▷ scattering lengths

$$a^{-} = rac{M_{\pi}m_{N}}{8\pi(M_{\pi}+m_{N})F_{\pi}^{2}} + \mathcal{O}(M_{\pi}^{3}), \qquad a^{+} = \mathcal{O}(M_{\pi}^{2})$$

[Weinberg (1966)]

> Goldberger-Treiman relation

$$g_{\pi N} = rac{g_A m_N}{F_\pi}$$

[Goldberger-Treiman (1958)]

• simplest process for chiral pion interaction with nucleons

• next-to-leading order $\mathcal{O}(p^2)$: low-energy constants (LECs) $c_1 - c_4$ effectively incorporate the effect of the $\Delta(1232)$: $m_{\Delta} - m_N \simeq 2M_{\pi}$

• c_i very important for nuclear physics: long-range part of NN and 3N potential

• scalar form factor of the nucleon

$$\begin{aligned} \sigma(t) &= \langle N(p') | \hat{m} \left(\bar{u}u + \bar{d}d \right) | N(p) \rangle \qquad t = (p' - p)^2 \\ \sigma_{\pi N} &\equiv \sigma(0) = \frac{\hat{m}}{2m_N} \langle N | \bar{u}u + \bar{d}d | N \rangle \end{aligned}$$

- $\sigma_{\pi N}$ determines the **light-quark contribution** to the nucleon mass
 - Feynman-Hellmann theorem

$$\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}}$$

relevant for direct-detection dark matter searches

 $\triangleright \sigma_{\pi N}$ determines the scalar coupling of the nucleon

$$\sigma_{SI} = \frac{4\mu_N^2}{\pi} \left| m_N \sum_q C_q^{SS} f_q^N + \cdots \right|, \qquad \mu_N = \frac{m_N m_\chi}{(m_N + m_\chi)}$$
$$\sigma_{\pi N} = m_N (f_{\mu} + f_d)$$

《曰》《卽》《臣》《臣》

The σ -term and πN scattering

- no scalar probe, but still relation to experiment
 - \hookrightarrow low-energy theorem

[Cheng, Dashen (1971); Brown, Pardee, Peccei (1971)]

• $\sigma_{\pi N}$ related to πN scattering amplitude

but at unphysical kinematics

 $\frac{F_{\pi}^{2}\bar{D}^{+}(\nu=0,t=2M_{\pi}^{2})}{F_{\pi}^{2}(a_{00}^{+}+2M_{\pi}^{2}a_{01}^{+})+\Delta_{D}} = \underbrace{\sigma(2M_{\pi}^{2})}_{\sigma_{\pi N}+\Delta_{\sigma}} + \Delta_{R}$

• $|\Delta_R| \lesssim 2$ MeV small [Bernard, Kaiser, Meißner (1996)] no chiral logs at one-loop order

no chirai logs at one-loop order

- $\Delta_D \Delta_\sigma = (-1.8 \pm 0.2)$ MeV [Hoferichter et al. (2012)]
- need to determine subthreshold parameters d_{00}^+ , d_{01}^+
 - \hookrightarrow Roy-Steiner equations

イロト イ団ト イヨト イヨト

Limited range of validity

$$\sqrt{s} \leq \sqrt{s_m} = 1.38 \,\mathrm{GeV}$$

$$\sqrt{t} \le \sqrt{t_m} = 2.00 \,\mathrm{GeV}$$

Input/Constraints

- S- and P-waves above matching point
 s > s_m (t > t_m)
- inelasticities
- higher waves (D-, F-, · · ·)
- scattering lengths from hadronic atoms

[Baru et al. 2011]

Output

S- and P-wave phase-shifts at low energies
 s < s_m (t < t_m)

- subthreshold parameters
 - ⊳ pion-nucleon *o*-term
 - ChPT LECs
- nucleon resonances

Hadronic atoms: constraints for πN

- $\pi H/\pi D$: bound state of π^- and p/d spectrum sensitive to **threshold** πN amplitude [PSI (1995-2010)]
- combined analysis of πH and πD :

$$\begin{aligned} \mathbf{a}_0^+ &\equiv \mathbf{a}^+ = (7.5 \pm 3.1) \cdot 10^{-3} M_\pi^{-1} \\ \mathbf{a}_0^- &\equiv \mathbf{a}^- = (86.0 \pm 0.9) \cdot 10^{-3} M_\pi^{-1} \end{aligned}$$

 but: a⁺ very sensitive to isospin breaking, PWA based on π[±]p channels

 $\hookrightarrow \text{use instead}$

$$\frac{a_{\pi^-\rho} + a_{\pi^+\rho}}{2} = (-0.9 \pm 1.4) \cdot 10^{-3} M_{\pi}^{-1}$$

 \triangleright isospin breaking in $\sigma_{\pi N}$ could be important

$$\overline{\mathbf{a}}_{0+}^{1/2} = 169.8(2.0) \times 10^{-3} M_{\pi}^{-1}$$
$$\overline{\mathbf{a}}_{0+}^{3/2} = -86.3(1.8) \times 10^{-3} M_{\pi}^{-1}$$

Roy-Steiner solutions: s-channel phase shifts

J. Ruiz de Elvira (UCM)

Roy-Steiner solutions: imaginary part t-channel partial waves

J. Ruiz de Elvira (UCM)

Roy-Steiner solutions: the sigma-term

$$\sigma_{\pi N} = F_{\pi}^2 \left(d_{00}^+ + 2M_{\pi}^2 d_{01}^+ \right) + \Delta_D - \Delta_\sigma - \Delta_R$$

subthreshold parameters output of the Roy-Steiner equations

$$d_{00}^+ = -1.36(3)M_\pi^{-1}, \quad d_{01}^+ = 1.16(2)M_\pi^{-3}$$

•
$$\Delta_D - \Delta_\sigma = -(1.8 \pm 0.2)$$
 MeV

 $|\Delta_R| \lesssim 2 \text{ MeV}$

[Hoferichter at al. (2012)] [Bernard, Kaiser, Meißner (1996)]

- isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by +3.0 MeV
- final results:

 $\sigma_{\pi N} = (59.0 \pm 1.6_{SL} \pm 0.9_{RS} \pm 2.0_{LET} \pm 2.2_{IB}) \text{ MeV} = (59.0 \pm 3.5) \text{ MeV}$

[Hoferichter, JRE, Kubis, Meißner (2015)]

ヨトィヨト

Image: Image:

Collaboration	χ QCD	JLQCD	BMWc	ETMC	RQCD	Mainz
Year	2016	2018	2020	2020	2023	2023
σ _{πΝ} (MeV)	45.9(7.4)(2.8)	26(3)(5)(2)	42.4(3.4)(4.7)	41.6(3.8)	43.9(4.7)	43.7(3.6)
Tension	1.5σ	4.7σ	3.8σ	2.5 <i>σ</i>	2.6 <i>σ</i>	3.1 <i>σ</i>

FAQ 1: Could it be isospin-breaking corrections?

- define isospin amplitudes by $\pi^{\pm}p$ channel
 - \hookrightarrow this is what (mainly) enters the PWAs
- calculate isospin-breaking corrections in ChPT, main effect $\Delta_{\pi} = M_{\pi^{\pm}}^2 M_{\pi^0}^2$
- $\bar{a}_{0+}^{1/2}$ and $\bar{a}_{0+}^{3/2}$ from pionic atoms defined consistent with these conventions
 - \hookrightarrow large isospin-breaking effect in a_{0+}^+

[Gasser et al. (2002)]

• for the σ term

$$\sigma_{\pi N} = F_{\pi}^{2} \left(d_{00} + 2M_{\pi}^{2} d_{01} \right) - \underbrace{\Delta_{R}}_{\leq 2MeV} + \underbrace{\Delta_{D} - \Delta_{\sigma}}_{(-1.8 \pm 0.2)MeV} + \underbrace{\frac{81g_{a}^{2}M_{\pi}\Delta_{\pi}}{256\pi F_{\pi}^{2}}}_{+3.4 \text{ MeV}} + \underbrace{\frac{e^{2}}{2}F_{\pi}^{2} \left(4f_{1} + f_{2}\right)}_{(-0.4 \pm 2.2) \text{ MeV}}$$
$$= F_{\pi}^{2} \left(d_{00} + 2M_{\pi}^{2} d_{01} \right) + 1.2(3.0) \text{ MeV}$$

0...

 \hookrightarrow main corrections from Δ_{π} increases $\sigma_{\pi N}$

• lattice convention for the σ -term defined at $M_{\pi^0} \equiv \bar{\sigma}_{\pi N}$

 $\hookrightarrow \Delta \sigma = \sigma_{\pi N} - \bar{\sigma}_{\pi N} = 3.1(5)$ MeV effect!

[Hoferichter, JRE, Kubis, Meißner (2023)]

イロト イポト イヨト イヨト

- fair enough, that's why we looked at cross sections
- challenges in extracting $\sigma_{\pi N}$ from low-energy cross sections
 - normalizations
 - electromagnetic corrections
- cannot use existing compilations due to bias from respective fit model
- strategy:
 - Roy-Steiner representation with scattering length as free parameter

 \hookrightarrow separately for $\pi^+ p \rightarrow \pi^+ p$, $\pi^- p \rightarrow \pi^- p$, $\pi^- p \rightarrow \pi^0 n$

- > normalizations as additional fit parameters (with GW as starting point)
- keep Coulomb piece of Tromborg correction, consider the rest as error estimate

[Tromborg et al. (1977)]

イロト イポト イヨト イヨト

FAQ 2: What if the pionic-atom measurements are wrong?

• example from $\pi^+ p \rightarrow \pi^+ p$: KH80, pionic atoms, fit to data

 \hookrightarrow can see by eye that KH80 is disfavored

J. Ruiz de Elvira (UCM)

CD2024 14

FAQ 2: What if the pionic-atom measurements are wrong?

[Hoferichter, JRE, Kubis, Meißner (2017)]

< ≣⇒

	$a_{0+}^{1/2}\left(10^{-3}M_{\pi}^{-1} ight)$	$a_{0+}^{3/2} \left(10^{-3} M_{\pi}^{-1} \right)$	$\sigma_{\pi N}$ (MeV)
KH80	173(3)	-101(4)	47(5)
pionic atoms	169.8(2.0)	-86.3(1.8)	59.0(3.5)
all channels	167.9(3.2)	-86.7(3.5)	58.3(4.2)
$\pi^{\pm} p ightarrow \pi^{\pm} p$	166.0(3.8)	-84.4(4.2)	59.8(4.5)

The $\pi N \sigma$ -term: excited state contamination

• two methods to extract $\bar{\sigma}_{\pi N}$ on the lattice

 \triangleright from the two-point function C^{2pt} via the Feynman-Hellmann theorem

 \triangleright from the scalar nucleon form factor three-point function C^{3pt}

the nucleon couples to the ground state and all its excitations

$$C_{S}^{2pt}(\tau, \mathbf{k}) = \sum_{i} |A_{i}(\mathbf{k})|^{2} e^{-M_{i}\tau}, \quad C_{S}^{3pt}(\tau, t) = \sum_{i,i} A_{i}A_{j}^{*} \langle i|S|j \rangle e^{-M_{i}t} e^{-M_{j}(\tau-t)}$$

- how to remove excited state contamination?
- LANL 2021 analysis: two fit strategies [Gupta, Park, Hoterichter, Mereghetti, Yoon, Bhattacharya (2021)]
 ▷ standard strategy: combined fit to C^{2pt} and C^{3pt} with flat priors on M_i
 - $> N\pi$ fit: includes the $N\pi$ or $N\pi\pi$ multihadron state using narrow-width prior for M_1
 - \hookrightarrow lattice data not precise enough to decide but

 $\sigma_{\pi N}$ changes from \sim 40 MeV to \sim 60 MeV on including the $N\pi$ and $N\pi\pi$ excited states

- ChPT in the euclidian also suggests large contribution of $N\pi$ or $N\pi\pi$ states to $\sigma_{\pi N}$
 - ▷ NLO large due to non-analytic loop effect (large pion coupling to scalar source)
 - \triangleright N²LO large due to the Δ (1232)
 - \hookrightarrow both effects go in the same direction!

The $\pi N \sigma$ -term: excited state contamination

Variation	$\sigma_{\pi N}$ [MeV]
$M_{\pi} < 220 \text{ MeV}$	42.04(1.27)
$M_{\pi} < 285 \text{ MeV}$	41.89(67)
no cut in M_{π}	41.67(44)
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a)$	41.58(6.58)
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a)$	39.31(3.15)
no cut in $M_{\pi} + \mathcal{O}(a)$	37.55(1.82)
$M_{\pi} < 220 \text{ MeV} + O(e^{-mL})$	42.45(1.33)
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(e^{-mL})$	42.43(79)
no cut in $M_{\pi} + O(e^{-mL})$	42.87(59)
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	42.69(6.68)
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	39.38(3.35)
no cut in $M_{\pi} + O(a) + O(e^{-mL})$	39.34(2.08)
$M_{\pi} < 220 \text{ MeV}$	46.81(1.14)
$M_{\pi} < 285 \text{ MeV}$	43.71(62)
no cut in M_{π}	41.04(39)
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a)$	51.38(5.87)
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a)$	45.77(2.73)
no cut in $M_{\pi} + O(a)$	40.38(1.65)
$M_{\pi} < 220 \text{ MeV} + O(e^{-mL})$	47.21(1.20)
$M_{\pi} < 285 \text{ MeV} + O(e^{-mL})$	44.44(76)
no cut in $M_{\pi} + O(e^{-mL})$	42.79(56)
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	52.26(5.93)
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	47.13(2.90)
no cut in $M_{\pi} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	43.83(1.87)

[Agadjanov et al. (2023)]

Mainz 2023 result:

also two strategies for excited state contamination

- ⊳ upper: "window"
- \triangleright lower: "two-state" (closest to " $N\pi$ fit" from LANL)
- lattice data currently cannot decide between both scenarios
 - \hookrightarrow final result: average, $\bar{\sigma}_{\pi N} =$ 43.7(3.6) MeV
- for "two-state" fit: systematic increase of (5-10) MeV when restricting results to low pion masses

most reliable result arguably $\bar{\sigma}_{\pi N} = 52.3(5.9)$

 \hookrightarrow compares well with RS results $\bar{\sigma}_{\pi N} = 55.9(3.5)$ MeV

• possible solution to the σ -term puzzle?

3 × 4 3 ×

Low-energy constants: matching to Chiral Perturbation Theory

• matching to ChPT at the subthreshold point:

one-to-one correspondence between subthreshold parameters and LECs

- chiral expansion expected to work best at subthreshold point
- > preferred choice for NN scattering due to proximity of relevant kinematic regions
- express the subthreshold parameters in terms of the LECs to $\mathcal{O}(p^4)$ in Heavy-baryon
- invert the system to solve for LECs

	NLO	N ² LO	N ³ LO
<i>c</i> ₁ [GeV ⁻¹]	-0.74 ± 0.02	-1.07 ± 0.02	-1.11 ± 0.03
:	:	:	
$ar{d}_1 + ar{d}_2 [{ m GeV}^{-2}]$	_	1.04 ± 0.06	7.42 ± 0.08
:	:	:	:
ē ₁₄ [GeV ⁻³]	—		$\stackrel{\cdot}{0.89\pm0.04}$

[Hoferichter, JRE, Kubis, Meißner (2015)]

- N³LO enhanced by $g_A^2(c_3 c_4) = -16 \text{ GeV}^{-1}$
- what's going on with chiral convergence?

J. Ruiz de Elvira (UCM)

$a_{0+}^{-}[10^{-3}M_{\pi}^{-3}]$	heavy-b	aryon-NN	heavy-b	aryon-πN	cov	ariant
	Δ -less	∆-ful	Δ -less	∆-ful	Δ -less	∆-ful
LO	79.4	79.4	79.4	79.4	79.4	79.4
NLO	79.4	79.4(0)	79.4	79.4(0)	80.1	81.9(1)
N ² LO	92.2	92.7(10)	92.9	90.5(9)	89.9	81.7(1.2)
N ³ LO	68.5	96.3(2.0)	58.6	69.1(1.2)	83.8	83.4(1.0)
pionic atoms	85.4(9)	85.4(9)	85.4(9)	85.4(9)	85.4(9)	85.4(9)

[Siemens, JRE, Epelbaum, Hoferichter, Krebs, Kubis, Meißner (2016)]

・ロト ・同ト ・ヨト ・ヨト

study of the chiral convergence with and without $\Delta(1232)$ and relativistic corrections

- including the Δ does reduce size of LECs and improve convergence
- further improvement in covariant formulation, but why?
- uncertainty of LECs totally dominated by scheme and chiral order

resonance characterized by

pole on unphysical Riemann sheet (accessible via unitarity cut)

- > connection to the physical region (not arbitrarily far in the complex plane)
- how to find them?
 - measurement on the real axis
 - analytic continuation to an unphysical Riemann sheet
- Non-trivial example: f₀(500)
 - \triangleright "visible" only as a broad bump in $\pi\pi$ scattering
 - > established from analytic continuation via Roy equations
 - clearly connected to physical region, e.g., via chiral trajectories

[Caprini, Colangelo, Leutwyler (2006)]

[Hanhart, Peláez, Ríos (2008)]

 \hookrightarrow application of similar ideas to nucleon resonances

Roy-Steiner equations provide model-independent access to the complex plane

- s-channel: Δ(1232) safely contained, N(1440) borderline, S-wave singularities (gray ovals) close to circular cut
- t-channel: $f_0(500)$, $f_0(980)$, $\rho(770)$ all safely contained

• $\Delta(1232)$ is an elastic resonance, located in the second Riemann sheet accessible by crossing continuously the πN cut

$$S'(s+i\epsilon) = S''(s-i\epsilon) \implies S''(s) = 1/S'(s)$$

 \hookrightarrow a pole in the second Riemann sheet is a zero in the first one

Δ(1232) pole parameters defined as

$$f_{1+}^{3/2}(s)^{\prime\prime} = rac{r_{\Delta}}{|q|(W_{\Delta} - W)}, \quad W_{\Delta} = \left(M_{\Delta} - irac{\Gamma_{\Delta}}{2}\right)$$

- Roy-Steiner result
 - $\begin{array}{ll} \textit{M}_{\Delta} = 1209.5(1.1) \; \text{MeV}, & \Gamma_{\Delta} = 98.5(1.2) \; \text{MeV}, & \rho_{\textit{M}_{\Delta}}\Gamma_{\Delta} = 0.65 \\ |\textit{r}_{\Delta}| = 51.3(9) \; \text{MeV}, & \delta_{\textit{r}_{\Delta}} = -47.4(4)^{\circ}, & \rho_{|\textit{r}_{\Delta}|\delta_{\textit{r}_{\Delta}}} = 0.11 \end{array}$

[Hoferichter, JRE, Kubis, Meißner (2024)]

<ロ> <同> <同> < 回> < 回> < 回> = 三

fully consistent with PDG estimate:

 $M_{\Delta} = [1209, 1211] \text{ MeV}, \quad \Gamma_{\Delta} = [98, 102] \text{ MeV}, \quad |r_{\Delta}| = [49, 52] \text{ MeV}, \quad \delta_{r_{\Delta}} = [-48, -45]^{\circ}$

- at this level of precision
 - \hookrightarrow isospin breaking becomes relevant!
- RS equations defined by charged channels $\pi^{\pm} p \rightarrow \pi^{\pm} p$
 - \hookrightarrow results correspond to weighted average of $\Delta^{++} \sim \pi^+ p$ and $\Delta^0 \sim \pi^- p, \pi^0 n$
- How we can estimate the $\Delta^{++} \Delta^0$ mass difference?
 - $ightarrow m_d m_u$ corrections computed in heavy-baryon ChPT at NNLO [Tiburzi, Walker-Loud (2006)] ightarrow and large- N_c estimates for Δ couplings [Siemens, JRE, Epelbaum, Hoferichter, Krebs, Kubis, Meißner (2016)]

$$\begin{split} m_{\Delta^{++}} &- m_{\Delta^{0}} = \frac{2}{3} (m_{p} - m_{n}) \Big|_{\text{QCD}} \times \left\{ 1 + \frac{2g_{A}M_{\pi}^{2}}{25(4\pi F_{\pi})^{2}} \left[37 + 55 \log\left(\frac{M_{\pi}^{2}}{\mu^{2}}\right) \right] \\ &+ \frac{4g_{A}^{2}\Delta^{2}}{(4\pi F_{\pi})^{2}} \left[\log\left(\frac{4\Delta^{2}}{M_{\pi}^{2}}\right) - \sigma_{\Delta} \log\left(\frac{1 + \sigma_{\Delta}}{1 - \sigma_{\Delta}}\right) \right] \right\}, \quad \sigma_{\Delta} = \sqrt{1 - \frac{M_{\pi}^{2}}{\Delta^{2}}} \end{split}$$

 \hookrightarrow leading to $m_{\Delta^{++}} - m_{\Delta^0} \Big|_{\text{QCD}} = -1.1 \text{ MeV}$

- radiative corrections?
 - Cottingham sum rule or lattice?

• same procedure for the *N*(1440) gives

 $M_{N(1440)} = 1473(35) \text{ MeV}$ PDG: [1360,1380] MeV

 $\Gamma_{N(1440)} = 73(14) \text{ MeV}$ PDG: [180,205] MeV

 \hookrightarrow way off from typical Roper parameters, why?

• N(1440) is an inelastic resonance

 \hookrightarrow pole on the third sheet, accessed via $\pi\pi N$ cut, is closer to the physical region!

RS equations give analytic continuation to the second sheet via πN unitarity cut

```
\hookrightarrow we only see the reflection of the true Roper in the second Riemann sheet
```

Nucleon resonances: N(1440)

- possible way around this: use Padé approximants for the analytic continuation
- Benchmark for $\Delta(1232)$:

 $\begin{array}{ll} M_{\Delta} = 1209.5(1.1) \ \text{MeV} \rightarrow 1209.8(1.5)(0.1) \ \text{MeV}, \\ |r_{\Delta}| = 51.3(9) \ \text{MeV} \rightarrow 51.2(2.2)(0.1) \ \text{MeV}, \\ \end{array} \\ \begin{array}{ll} \delta_{r_{\Delta}} = -47.4(4)^{\circ} \rightarrow 46.8(2.2)(0.2)^{\circ}, \\ \end{array}$

still competitive within PDG estimate

 $M_{\Delta} = [1209, 1211] \text{ MeV}, \quad \Gamma_{\Delta} = [98, 102] \text{ MeV}, \quad |r_{\Delta}| = [49, 52] \text{ MeV}, \quad \delta_{r_{\Delta}} = [-48, -45]^{\circ}$

for the N(1440)

$$\begin{split} M_{N(1440)} &= 1374(3)(4) \text{ MeV}, & \Gamma_{N(1440)} &= 215(18)(8) \text{ MeV} \\ |r_{N(1440)}| &= 58(15)(17) \text{ MeV}, & \delta_{N(1440)} &= -65(2)(11)^{\circ} \end{split}$$

Padé uncertainties now substantial, especially for residue

[Hoferichter, JRE, Kubis, Meißner (2024)]

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

comparing with the PDG

 $M_{N(1440)} = [1360, 1380] \text{ MeV}, \quad \Gamma_{N(1440)} = [180, 205] \text{ MeV}, \quad |r_{N(1440)}| = [50, 60] \text{ MeV}, \quad \delta_{N(1440)} = [-100, -80]^{\circ}$

 \hookrightarrow suggests a Roper width towards the upper end of the PDG range

Nucleon resonances: subthreshold singularity in the S-wave?

- subthreshold singularities in the S-wave have: a long history
 - ▷ can arise as a consequence of missing LHCs [Döring et al. (2009)]
 - observed in certain (unitarized) models

▷ observed in simplified RS set-up at $M_S = 918(3)$ MeV, $\Gamma_S = 326(18)$ [Cao et al. (2022)]

• we find a pole of $f_{0+}^{1/2}(s)^{\prime\prime}$ at

 $M_S = 913.9(1.6) \text{ MeV}, \qquad \Gamma_S = 337.7(6.2) \text{ MeV}$

[Hoferichter, JRE, Kubis, Meißner (2024)]

イロン イヨン イヨン イヨン

[Wang et al. (2017), Li, Zheng (2021)]

- how to interpret this?
 - singularity lies far in the complex plane
 - singularity essentially sits on the circular cut
 - ▷ connection to the physical region? [ChPT likely not applicable to bridge the gap]

• t-channel resonance positions input in the RS equations

but one can obtain residues for their coupling to $\bar{N}N$

• for the scalar resonances $S = f_0(500)$ and $f_0(980)$

$$\frac{g_{SNN}}{g_{S\pi\pi}} = i\sqrt{6}\frac{\sigma_{\pi}(t_S)}{4m_N^2 - t_S} f_+^0(t_S), \quad \sqrt{t_s} = M_S - \frac{\Gamma_S}{2}, \quad \sigma_{\pi}(t) = \sqrt{1 - \frac{4M_{\pi}^2}{t}}$$

with $f^0_+(t)$ the $\pi\pi \to \bar{N}N$ S-wave on the first sheet

• using consistent $\pi\pi$ Roy-equation input for $f_0(500)$ and $f_0(980)$ pole parameters obtain

$$g_{f_0(500)NN} = 12.1(1.4) - 13.9(5) i, \quad g_{f_0(980)NN} = 9.1(9) - 2.9(5) i$$

[Hoferichter, JRE, Kubis, Meißner (2024)]

イロト イポト イヨト イヨト

• defining the $f_0(500)$ and $f_0(980)$ decay constants F_S from the pion scalar form factor

 \hookrightarrow can test Goldberger-Treiman relations

[Carruthers (1971)]

$$\frac{F_{f_0(500)NN} g_{f_0(500)NN}}{m_N} = 0.90(28) - 2.78(20)i, \quad \frac{F_{f_0(980)NN} g_{f_0(980)NN}}{m_N} = -1.69(27) - 0.25(15)i$$

 \hookrightarrow real part for $f_0(500)$ indeed close to 1, but sizable imaginary part

For the ρ(770)

$$\begin{split} \frac{g_{\rho NN}^{(1)}}{g_{\rho\pi\pi}} &= -2i\sigma_{\pi}(t_{\rho})\frac{m_{N}(t_{\rho}-M_{\pi}^{2})}{t_{\rho}-m_{N}^{2}}\left[f_{+}^{1}(t_{\rho})-\frac{t_{\rho}}{4\sqrt{2}m_{N}}f_{-}^{1}(t_{\rho})\right],\\ \frac{g_{\rho NN}^{(2)}}{g_{\rho\pi\pi}} &= +2i\sigma_{\pi}(t_{\rho})\frac{m_{N}(t_{\rho}-M_{\pi}^{2})}{t_{\rho}-m_{N}^{2}}\left[f_{+}^{1}(t_{\rho})-\frac{m_{N}}{\sqrt{2}}f_{-}^{1}(t_{\rho})\right] \qquad \qquad \sqrt{t_{\rho}}=M_{\rho(770)}-\frac{\Gamma_{\rho(770)}}{2} \end{split}$$

with $f^1_{\pm}(t) \ \pi\pi o \bar{N}N$ P-waves and $g^{(1)/(2)}_{\rho NN}$ vector/tensor couplings

• using again consistent $\pi\pi$ Roy-equation input for $\rho(770)$ pole parameters obtain

$$g_{\rho NN}^{(1)} = 3.31(69) + 2.99(36)i, \quad g_{\rho NN}^{(2)} = 33.4(2.7) + 9.0(1.0)i$$

[Hoferichter, JRE, Kubis, Meißner (2024)]

• test universality of the $\rho(770)$ couplings

$$\frac{g_{\rho NN}^{(1)}}{g_{\rho \pi \pi}} = 0.50(12) + 0.55(5)i, \quad \frac{g_{\rho NN}^{(2)}}{g_{\rho \pi \pi}} = 1.46(12) + 0.54(3)i$$

expected to be 1 in the narrow-width limit

 $\hookrightarrow \text{sizable universality violation}$

J. Ruiz de Elvira (UCM)

Summary

- review of Roy–Steiner results for πN
- precise determination of the $\sigma_{\pi N}$
 - \triangleright with modern pionic-atom input for scattering lengths $\sigma_{\pi N} = 59.0(3.5)$ MeV
 - \triangleright with low-energy πN scattering data $\sigma_{\pi N} = 58(5)$ MeV
- lingering tension with lattice QCD needs to be resolved
 - related to the analysis excited state contamination?
- extraction of the ChPT LECs
- nucleon resonances
 - \triangleright precision determination of $\Delta(1232)$ and N(1440) pole parameters
 - \triangleright $\overline{N}N$ residues, $\rho(770)$ universality violation,

Goldberger-Treiman for $f_0(500)$ and $f_0(980)$ strongly violated

.

Spare slides

Warm up: Roy-equations for $\pi\pi$ the well-known example

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• start from twice-subtracted fixed-t DRs of the generic form

$$T'(s,t) = c(t) + \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \left[\frac{s^2}{(s'-s)} - \frac{u^2}{(s'-u)} \right] \operatorname{Im} T'(s',t)$$

- subtraction functions c(t) are determined via crossing symmetry
 - \hookrightarrow functions of the scattering lengths: a_0^0 and a_0^2
- project onto partial waves t_J^l (s) (angular momentum J, isospin I) expand Im $T^l(s', t)$ in partial waves

$$t_{J}^{l}(s) = \text{polynomial}(a_{0}^{0}, a_{0}^{2}) + \sum_{J'=0}^{\infty} (2J'+1) \sum_{J'=0,1,2} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s', s) \operatorname{Im} t_{J'}^{I'}(s')$$

• kernel functions $K_{JJ'}^{ll'}(s', s)$ analytically known

[Rov (1971)]

$\pi\pi$ Roy equations: results

• elastic unitarity

$$t_J^l(s)=rac{\mathrm{e}^{2i\delta_J^l(s)}-1}{2\,i\,\sigma(s)},\qquad \sigma(s)=\sqrt{1-rac{4M_\pi^2}{s}}$$

 \hookrightarrow coupled integral equations for phase shifts

• example: solution for the $\pi\pi$ I=0 S-wave phase shift $\delta_0^0(s)$ and elasticity $\eta_0^0(s)$

[García-Martin, Kaminski, Peláez, JRE, Yndurain (2011)]

Roy–Steiner equations for πN

• Key challenges:

 \triangleright crossing: coupling between $\pi N \rightarrow \pi N$ and $\pi \pi \rightarrow \bar{N}N$

 \hookrightarrow hyperbolic dispersion relations

 \triangleright unitarity: large pseudophysical region in the *t*-channel $t = 4M_{\pi}^2 \longrightarrow 4m_N^2$

 $\hookrightarrow \pi\pi$ and $\overline{K}K$ intermediate states

Roy-Steiner solutions: flow of information

æ

Roy-Steiner solutions: real part t-channel partial waves

J. Ruiz de Elvira (UCM)

CD2024 35

- Statistical errors (at intermediate energies)
 - > important correlations between subthreshold parameters
 - shallow fit minima
 - \hookrightarrow Sum rules for subthreshold parameters become essential to reduce the errors
- Input variation (small)
 - small effect for considering s-channel KH80 input
 - \triangleright very small effects from L > 5 s-channel PWs
 - \triangleright small effect from the different S-wave extrapolation for t > 1.3 GeV
 - \triangleright negligible effect of ρ' and ρ''
 - \triangleright very significant effects of the D-waves ($f_2(1275)$)
 - F-waves shown to be negligible
- matching conditions (close to Wm)
- scattering length (SL) errors (on S-waves and subthreshold parameters)
 - \hookrightarrow very important for the $\sigma_{\pi N}$

Roy-Steiner solutions: decomposition of the equations

J. Ruiz de Elvira (UCM)

CD2024 37

• Assumption: Mandelstam analyticity

[Mandelstam (1958,1959)]

 \Rightarrow T(s,t) can be written in terms double spectral densities: ρ_{st} , ρ_{su} , ρ_{ut}

$$T(s,t) = \frac{1}{\pi^2} \iint ds' du' \frac{\rho_{su}(s',u')}{(s'-s)(u'-u)} + \frac{1}{\pi^2} \iint dt' du' \frac{\rho_{tu}(t',u')}{(t'-t)(u'-u)} + \frac{1}{\pi^2} \iint ds' dt' \frac{\rho_{st}(s',t')}{(s'-s)(t'-t)}$$

 \hookrightarrow integration ranges defined by the support of the double spectral densities ho

- They limit the range of validity of the HDRS:
- Pw expansion converge
 - $\triangleright z = \cos \theta \in$ Lehmann ellipses

the hyperbolae (s - a)(u - a) = b
 does not enter any double spectral region

▷ for a value of a, constraints on b yield ranges in s & t

[Lehmann (1958)]

- Karlsruhe/Helsinki partial-wave analysis KH80 [Höhler et al. (1980s)] \hookrightarrow comprehensive analyticity constraints. old data • Formalism for the extraction of $\sigma_{\pi N}$ via the Cheng–Dashen low-energy theorem \hookrightarrow "canonical value" $\sigma_{\pi N} \sim 45$ MeV, based on KH80 input [Gasser, Leutwyler, Locher, Sainio (1988,1991)] GWU/SAID partial-wave analysis [Pavan, Strakovsky, Workman, Arndt (2002)] \hookrightarrow much larger value $\sigma_{\pi N} = (64 \pm 8)$ MeV • More recently: ChPT in different regularizations (w/ and w/o Δ) [Alarcón et al. (2012)] \hookrightarrow fit to PWAs, $\sigma_{\pi N} = 59 \pm 7$ MeV • This talk: two new sources of information on low-energy πN scattering
 - \triangleright Precision extraction of πN scattering lengths from hadronic atoms
 - > Roy-equation constraints: analyticity, unitarity, crossing symmetry

・ロト ・同ト ・ヨト ・ヨト

FAQ 3: Why does your number differ from Gasser, Leutwyler, Sainio?

• Gasser, Leutwyler, Sainio 1991 relies on Karlsruhe-Helsinki partial-wave analysis "KH80"

input comparison

	$g^2/4\pi$	$a_{0+}^{1/2} \left(10^{-3} M_{\pi}^{-1} ight)$	$a_{0+}^{3/2} \left(10^{-3} M_{\pi}^{-1} ight)$	$\sigma_{\pi N}$ (MeV)
GLS solution	14.28	173(3)	-101(4)	45
RS solution with HA	13.7(2)	169.8(2.0)	-86.3(1.8)	59.0(3.5)

• RS eqs. with KH80 input $\hookrightarrow \sigma_{\pi N} = 46 \text{ MeV}$

→KH80 is internally consistent but at odd with the modern SL determinations

- how are d_{00}^+ and d_{01}^+ extracted in Gasser, Leutwyler, Sainio 1991?
 - \hookrightarrow Forward Dispersion Relations

FAQ 3: Why does your number differ from Gasser, Leutwyler, Sainio?

blue/red ⇔ LHS/RHS

→ Roy-Steiner equation solutions with pionic atoms satisfy Forward Dispersion Relations

The $\pi N \sigma$ -term: comparison to lattice results

• lattice determination of $\sigma_{\pi N}$ at (almost) the physical point

Collaboration	χ QCD	JLQCD	BMWc	ETMC	RQCD	Mainz
Year	2016	2018	2020	2020	2023	2023
σ _{πN} (MeV)	45.9(7.4)(2.8)	26(3)(5)(2)	42.4(3.4)(4.7)	41.6(3.8)	43.9(4.7)	43.7(3.6)
Tension	1.5σ	4.7σ	3.8σ	2.5 <i>σ</i>	2.6 <i>σ</i>	3.1 <i>σ</i>

• tension can be illustrated in scattering-length plane

 \hookrightarrow independent constraint from lattice calculation of $a_{0+}^{1/2}$ and $a_{0+}^{3/2}$

J. Ruiz de Elvira (UCM)

The σ -term: dispersion relation for the scalar form factor of the nucleon

• Unitarity relation: Im
$$\sigma(t) = \frac{2}{4m^2 - t} \left\{ \frac{3}{4} \sigma_t^{\pi} (F_{\pi}^{\mathcal{S}}(t))^* f_+^0(t) + \sigma_t^{\mathcal{K}} (F_{\mathcal{K}}^{\mathcal{S}}(t))^* h_+^0(t) \right\}$$

$$\operatorname{Im} \bigotimes = \operatorname{Im} \bigotimes \left[\begin{array}{c} & & \\ &$$

• Once subtracted dispersion relation: $\sigma(t) = \sigma_{\pi N} + \frac{t}{\pi} \int_{t_{-}}^{\infty} dt' \frac{\text{Im}\sigma(t')}{t'(t'-t)}$

• $\Delta_{\sigma} = \sigma(2M_{\pi}^2) - \sigma_{\pi N}$

J. Ruiz de Elvira (UCM)

• t-channel expansion of the subtracted pseudo-Born amplitude

$$\bar{D}(\nu=0,t) = 4\pi \left\{ \frac{1}{\rho_t^2} \, \bar{t}_0^+(t) + \frac{5}{2} q_t^2 \, \bar{t}_2^+(t) + \frac{27}{8} \rho_t^2 q_t^4 \, \bar{t}_4^+(t) + \frac{56}{16} \rho_t^4 q_t^6 \, \bar{t}_6^+(t) + \cdots \right\}$$

• Insert *t*-channel RS equations for Born-term-subtracted amplitudes $\bar{t}_{J}^{+}(t)$

$$\bar{D}(\nu = 0, t) = d_{00}^{+} + d_{01}^{+}t - 16t^{2} \int_{t_{\pi}}^{\infty} dt' \frac{\mathrm{Im}\bar{t}_{0}^{+}(t')}{t'^{2}(t' - 4m^{2})(t' - t)} + \{J \ge 2\} + \{\text{s-channel integral}\}$$

• $\Delta_D = F_{\pi}^2 \left(\bar{D}(\nu = 0, t) - d_{00}^+ + d_{01}^+ t \right)$ from evaluation at $t = 2M_{\pi}^2$

Nucleon scalar form factor

$$\begin{aligned} \Delta_{\sigma} &= (13.9 \pm 0.3) \,\mathrm{MeV} \\ &+ Z_1 \left(\frac{g^2}{4\pi} - 14.28 \right) + Z_2 \left(d_{00}^+ M_{\pi} + 1.46 \right) + Z_3 \left(d_{01}^+ M_{\pi}^3 - 1.14 \right) + Z_4 \left(b_{00}^+ M_{\pi}^3 + 3.54 \right) \\ Z_1 &= 0.36 \,\mathrm{MeV} \;, \qquad Z_2 = 0.57 \,\mathrm{MeV} \;, \qquad Z_3 = 12.0 \,\mathrm{MeV} \;, \qquad Z_4 = -0.81 \,\mathrm{MeV} \end{aligned}$$

• πN amplitude

$$\begin{split} \Delta_{D} &= (12.1 \pm 0.3) \,\mathrm{MeV} \\ &+ \hat{Z}_{1} \left(\frac{g^{2}}{4\pi} - 14.28 \right) + \hat{Z}_{2} \left(d^{+}_{00} \, M_{\pi} + 1.46 \right) + \hat{Z}_{3} \left(d^{+}_{01} \, M^{3}_{\pi} - 1.14 \right) + \hat{Z}_{4} \left(b^{+}_{00} \, M^{3}_{\pi} + 3.54 \right) \\ \hat{Z}_{1} &= 0.42 \,\mathrm{MeV} \;, \qquad \hat{Z}_{2} = 0.67 \,\mathrm{MeV} \;, \qquad \hat{Z}_{3} = 12.0 \,\mathrm{MeV} \;, \qquad \hat{Z}_{4} = -0.77 \,\mathrm{MeV} \end{split}$$

 \hookrightarrow most of the dependence on the πN parameters cancels in the difference

Full Correction

$$\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2) \text{ MeV}$$

< ⊒ >

● Fixed-*t* dispersion relations at threshold → GMO sum rule

$$\frac{g^2}{4\pi} = \left(\left(\frac{m_p + m_n}{M_\pi}\right)^2 - 1 \right) \left\{ \left(1 + \frac{M_\pi}{m_p}\right) \frac{M_\pi}{4} \left(a_{\pi^- p} - a_{\pi^+ p}\right) - \frac{M_\pi^2}{2} J^- \right\}$$
$$= 13.69 \pm 0.12 \pm 0.15$$
$$J^- = \frac{1}{4\pi^2} \int_0^\infty dk \frac{\sigma_{\pi^- p}^{\text{ot}}(k) - \sigma_{\pi^+ p}^{\text{ot}}(k)}{\sqrt{M_\pi^2 + k^2}}$$

• J⁻ known very accurately

[Ericson et al. (2002), Abaev et al. (2007)]

3 × 4 3 ×

other determinations

	de Swart et al. 97	Arndt et al. 94	Ericson et al. 02	Bugg et al. 73	KH80
method	NN	πN	GM0	πN	πN
$g^2/4\pi$	13.54 ± 0.05	13.75 ± 0.15	14.11 ± 0.20	14.30 ± 0.18	14.28

- With KH80 scattering lengths $g^2/4\pi = 14.28$ is reproduced exactly
 - \hookrightarrow discrepancy related to old scattering length values

Image: A matrix

• Define as isoscalar as

$$X^{+} \to X^{\rho} = \frac{1}{2} (X_{\pi+\rho \to \pi+\rho} + X_{\pi-\rho \to \pi-\rho}), \qquad X \in \{D, d_{00}, d_{01}, a_{0+} \dots\}$$

and "isospin limit" by proton and charged pion

Assume virtual photons to be removed

 \hookrightarrow scenario closest to actual πN PWA

- Calculate IV corrections in SU(2) ChPT, mainly due to $\Delta_{\pi} = M_{\pi}^2 M_{\pi^0}^2$
 - For the σ term no differences at O(p³)

$$\sigma_{\pi N} = \sigma_{P} = \sigma_{n} = -4c_{1}M_{\pi^{0}}^{2} - \frac{3g_{A}^{2}M_{\pi^{0}}^{2}}{64\pi F_{\pi}^{2}}(2M_{\pi} + M_{\pi^{0}}) + \mathcal{O}(M_{\pi}^{4})$$

Slope of the scalar form factor

$$\Delta_{\sigma}^{\rho} = \sigma_{\rho}(2M_{\pi}^{2}) - \sigma_{\rho} = \frac{3g_{A}^{2}M_{\pi}^{3}}{64\pi F_{\pi}^{2}} + \frac{g_{A}^{2}M_{\pi}\Delta_{\pi}}{128\pi F_{\pi}^{2}} \left(-7 + \sqrt{2}\log(3 + 2\sqrt{2})\right) + \mathcal{O}(M_{\pi}^{4})$$

• Similarly for Δ_D^p

$$\Delta_{D}^{p} = F_{\pi}^{2} \left\{ \bar{D}_{p} \left(0, 2M_{\pi}^{2} \right) - d_{00}^{p} - 2M_{\pi}^{2} d_{01}^{p} \right\} = \frac{23g_{a}^{2}M_{\pi}^{3}}{384\pi F_{\pi}^{2}} + \frac{g_{a}^{2}M_{\pi}\Delta_{\pi}}{256\pi F_{\pi}^{2}} \left(3 + 4\sqrt{2}\log\left(1 + \sqrt{2}\right) \right) + \mathcal{O}(M_{\pi}^{4})$$

• Taking everything together

$$\begin{aligned} \sigma_{\pi N} &= F_{\pi}^{2} \left(d_{00}^{p} + 2M_{\pi}^{2} d_{01}^{p} \right) - \Delta_{R} + \Delta_{D} - \Delta_{\sigma} + \left(\Delta_{D}^{p} - \Delta_{D} \right) - \left(\Delta_{\sigma}^{p} - \Delta_{\sigma} \right) \\ &+ \sigma_{p} (2M_{\pi}^{2}) + F_{\pi}^{2} \bar{D}(0, 2M_{\pi}^{2}) \\ &= F_{\pi}^{2} \left(d_{00}^{p} + 2M_{\pi}^{2} d_{01}^{p} \right) - \underbrace{\Delta_{R}}_{\leq 2MeV} + \underbrace{\Delta_{D} - \Delta_{\sigma}}_{(-1.8 \pm 0.2)MeV} + \underbrace{\frac{81g_{a}^{2} M_{\pi} \Delta_{\pi}}{256\pi F_{\pi}^{2}}}_{3.4MeV} + \underbrace{\frac{e^{2}}{2} F_{\pi}^{2} (4f_{1} + f_{2})}_{(-0.4 \pm 2.2)MeV} \end{aligned}$$

 \hookrightarrow sizable corrections from Δ_{π} increasing the value of the $\sigma_{\pi N}$

The "ruler plot" vs. ChPT

Lattice QCD simulations can be performed at different quark/pion masses Pion mass dependence of m_N up to NNNLO in ChPT, using

Input from Roy–Steiner solution

- \hookrightarrow range of convergence of the chiral expansion is very limited
- \hookrightarrow huge cancellation amongst terms to produce a linear behavior

• relate $\sigma_{\pi N}$ to strangeness content of the nucleon:

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \frac{\langle N|\bar{u}u + \bar{d}d - 2\bar{s}s|N\rangle}{1 - y} = \frac{\sigma_0}{1 - y}, \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

 $(m_s - m) (\bar{u}u + \bar{d}d - 2\bar{s}s) \subset LQCD$ produces SU(3) mass splittings:

$$\sigma_{\pi N} = \frac{\sigma_0}{1-y}, \quad \sigma_0 = \frac{\hat{m}}{m_s - \hat{m}} \left(m_{\Xi} + m_{\Sigma} - 2m_N \right) \sim 26 \text{ MeV}$$

higher-order corrections: $\sigma_0 \rightarrow$ (36 \pm 7) MeV

- potentially large effects
 - from the decuplet
 - From relativistic corrections (EOMS vs. heavy-baryon)
 - \hookrightarrow may increase to $\sigma_0 = (58 \pm 8)$ MeV

Conclusion:

- $ightarrow \sigma_{\pi N} = (59.0 \pm 3.5)$ MeV not incompatible with small y
- \triangleright chiral convergence of σ_0 (hence $\langle N|\bar{s}s|N\rangle$) very doubtful

[Borasoy, Meißner (1997)]

[Alarcon et al. 2013, Siemens et al. (2016)]

The σ -term: comparison to experimental cross-section data

Unravel the tension around the σ -term comparing with the experimental πN data base

- Generate RS differential cross sections
 - ▷ RS S and P waves
 - ▷ higher partial waves from SAID and KH80
 - EM interactions implemented using Tromborg procedure
- Uncertainties from statistical effects, SL, input variation
 - \triangleright below $T_{\pi} = 50$ MeV uncertainties dominated by scattering length errors
 - \hookrightarrow disentangle RS SL solutions by looking at the data base
- Define:

$$\chi^2_{\mathbf{a}'_{0+}} = \sum_{i,j} \frac{\left(\mathcal{O}^{\exp}_{i,j} - \mathcal{O}^{\mathsf{RS}}_{i,j}(\mathbf{a}'_{0+})\right)^2}{\Delta \mathcal{O}^{\exp\,2}_{i,j}}$$

• Discrepancy concentrated in the $\pi^+ p \rightarrow \pi^+ p$ channel

	RS	KH80
$a_{0+}^{1/2}$ [10 ⁻³ M_{π}^{-1}]	169.8 ± 2.0	173 ± 3
$a_{0+}^{3/2}$ [10 ^{−3} M_{π}^{-1}]	-86.3 ± 1.8	-101 ± 4

J. Ruiz de Elvira (UCM)

[Workman et al. 2006,2012, Höhler et al. (1980s)]

[Tromborg et al. (1977)]

The σ -term: $\pi^+ p \rightarrow \pi^+ p$ cross section

J. Ruiz de Elvira (UCM)

CD2024 52

The σ -term: extraction from experimental cross-section data

- Linearized version of RS $d\sigma/d\Omega$ around the HA scattering lengths
- Unbiased fit to the pion-nucleon data base \Rightarrow normalizations constants as fit parameters
- minimize iteratively unbiased χ^2 as a function of a'_{0+} and ζ

$$\chi^{2}(\boldsymbol{a},\boldsymbol{a}_{0},\boldsymbol{\zeta},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}) = \sum_{k=1}^{N} \chi^{2}_{k}(\boldsymbol{a},\boldsymbol{a}_{0},\boldsymbol{\zeta},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}),$$

$$\chi^{2}_{k}(\boldsymbol{a},\boldsymbol{a}_{0},\boldsymbol{\zeta},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0}) = \sum_{i,j=1}^{N_{k}} \left(\boldsymbol{\zeta}_{k}^{-1}\sigma(\boldsymbol{W}_{i}^{k},\boldsymbol{a}) - \boldsymbol{\sigma}_{i}^{k}\right) \left(\boldsymbol{\zeta}_{k}^{-1}(\boldsymbol{a}_{0},\boldsymbol{\zeta}_{0},\Delta\boldsymbol{\zeta}_{0})\right)_{ij} \left(\boldsymbol{\zeta}_{k}^{-1}\sigma(\boldsymbol{W}_{j}^{k},\boldsymbol{a}) - \boldsymbol{\sigma}_{j}^{k}\right),$$

$$\left(C_k(a_0,\zeta_0,\Delta\zeta_0)\right)_{ij} = \delta_{ij} \left(\Delta\sigma_i^k\right)^2 + \sigma(W_i^k,a_0)\sigma(W_j^k,a_0) \left(\frac{\Delta\zeta_{0,k}}{\zeta_{0,k}^2}\right)^2,\tag{1}$$

channel	SL combination	result	HA SL	KH80 SL
$\pi^+ p o \pi^+ p$	a ₀₊ ^{3/2}	-84.4 ± 1.5	-86.3 ± 1.8	-101 ± 4
$\pi^- p ightarrow \pi^- p$	$(2a_{0+}^{1/2} + a_{0+}^{3/2})/3$	82.5 ± 1.5	84.4 ± 1.7	81.6 ± 2.4
$\pi^- p \rightarrow \pi^0 n$	$-\sqrt{2}(a_{0+}^{1/2}-a_{0+}^{3/2})/3$	-122.3 ± 3.4	-120.7 ± 1.3	-129.2 ± 2.4

• Electromagnetic nucleon form factor:

$$\langle N(p')|j_{\text{em}}^{\mu}|N(p)\rangle = \bar{u}(p') \left[F_1^N(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_N}F_2^N(t) \right] u(p)$$

$$G_E^N(t) = F_1^N(t) + \frac{t}{4m_N^2}F_2^N(t), \quad G_M^N(t) = F_1^N(t) + F_2^N(t)$$

• first inelastic correction from $\pi\pi$ continuum

$$\begin{split} & \text{Im } G_{E}^{\mathsf{v}}(t) = \frac{q_{t}^{3}}{m_{N}\sqrt{t}} \big(\mathcal{F}_{\pi}^{\mathsf{v}}(t) \big)^{*} t_{+}^{1}(t) \theta \big(t - t_{\pi} \big) \\ & \text{Im } G_{M}^{\mathsf{v}}(t) = \frac{q_{t}^{3}}{\sqrt{2t}} \big(\mathcal{F}_{\pi}^{\mathsf{v}}(t) \big)^{*} t_{-}^{1}(t) \theta \big(t - t_{\pi} \big) \end{split}$$

- rigorous constraint fixed from:
 - \triangleright RS t-channel partial waves
 - \triangleright pion form factor
- update of Höhler spectral functions, including also isospin breaking

criticism by Lee et al. (2015)

Nucleon form factor: $\rho - \omega$ mixing

Isovector and isoscalar nucleon form factor

$$F_{i}^{s}(t) = \frac{1}{2} \left(F_{i}^{p}(t) + F_{i}^{n}(t)\right), \quad F_{i}^{v}(t) = \frac{1}{2} \left(F_{i}^{p}(t) - F_{i}^{n}(t)\right)$$

$$\lim G_{E}^{v}(t) = \frac{q_{t}^{3}}{m_{N}\sqrt{t}} |\Omega_{1}^{1}(t)||t_{1}^{1}(t)|\theta(t - t_{\pi})$$

$$\times \left(1 + \alpha t + \frac{\varepsilon t}{M_{\omega}^{2} + iM_{\omega}\Gamma_{\omega} - t}\right)$$

$$+ \varepsilon \ln \left(\frac{t}{M_{\omega}^{2} - iM_{\omega}\Gamma_{\omega} - t}\right)$$

$$\times \frac{1}{\pi} \int_{t_{\pi}}^{\infty} dt' \frac{\frac{q_{i}^{3}}{m_{N}\sqrt{t}} |\Omega_{1}^{1}(t')||t_{1}^{1}(t')|}{t' - t - i\varepsilon},$$

$$\lim G_{M}^{v}(t) = \frac{q_{i}^{3}}{\sqrt{2t}} |\Omega_{1}^{1}(t)||t_{-}^{1}(t)|\theta(t - t_{\pi})$$

$$\times \left(1 + \alpha t + \frac{\varepsilon t}{M_{\omega}^{2} + iM_{\omega}\Gamma_{\omega} - t}\right)$$

$$+ \varepsilon \ln \left(\frac{t}{M_{\omega}^{2} - iM_{\omega}\Gamma_{\omega} - t}\right)$$

$$+ \varepsilon \ln \left(\frac{t}{M_{\omega}^{2} - iM_{\omega}\Gamma_{\omega} - t}\right)$$

$$\times \frac{1}{\pi} \int_{t_{\pi}}^{\infty} dt' \frac{\frac{q_{i}^{3}}{\sqrt{2t}} |\Omega_{1}^{1}(t')||t_{-}^{1}(t')|}{t' - t - i\varepsilon}.$$

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Nucleon form factor: $\pi\pi$ continuum

• $\pi\pi \to \bar{N}N$ partial waves + F_{π}^{V} pion form factor

 $\hookrightarrow \pi\pi$ contribution to the isovector spectral functions

- consistent $\pi\pi$ phase shifts in f_1^{\pm} and F_{π}^{V}
 - \hookrightarrow Watson theorem is satisfied
- modern pion form factor data

[BaBar 2009, KLOE 2012, BESIII (2015)]

• isospin breaking: $m_{\rho} - m_n$ in pole terms, subthreshold parameters, consistent $\rho - \omega$ mixing

Nucleon form factors: sum rules and proton radius puzzle

sum rules for the isovector radii

radii:	$\langle r_E^2$	$\langle M \rangle^{\nu} = \frac{6}{\pi} \int_{4M_{\pi}^2}^{\Lambda}$	$\mathrm{d}t' \frac{\mathrm{Im} G^{\mathrm{v}}_{E/M}(t'}{t'^2}$)
		$\Lambda=1\text{GeV}$	$\Lambda = 2m_N$	
$\langle r_E^2 \rangle^v$ [fr	n²]	0.418(32)	0.405(36)	
$\langle r_M^2 \rangle^v$ [fr	n²]	1.83(10)	1.81(11)	

• correcting normalization by single heavier resonance: ρ' , ρ'' : reduces the radii only to: $\Delta \langle r_E^2 \rangle^{\nu} = -(0.006...0.008) \text{ fm}^2$ $\Delta \langle r_M^2 \rangle^{\nu} = -(0.05...0.07) \text{ fm}^2$

• with $\langle r_E^2 \rangle^n = -0.1161(22) \text{ fm}^2$ (*n* scattering on heavy atoms):

 \hookrightarrow proton radius puzzle \iff isovector radius puzzle

 $\langle r_E^2 \rangle^{\nu} = 0.412 \, \text{fm}^2 \, (\mu \text{H})$ vs. $\langle r_E^2 \rangle^{\nu} = 0.442 \, \text{fm}^2$ (CODATA)

mild preference for small proton charge radius

[Hoferichter, Kubis, JRE, Hammer, Meißner (2016)]

Nucleon form factors: relation to the antisymmetric quark tensor

- matrix elements $\langle N(p') | \bar{q} \sigma^{\mu\nu} q | N(p) \rangle$ input for BSM searches
 - \hookrightarrow responsible for χN and $\bar{\chi} N$ spin–dependent cross section difference
- isovector component: $J^{PC} = 1^{--}$ states related to P-wave $\pi\pi$ spectral function
 - \hookrightarrow equivalence of vector and antisymmetric tensor representations

[Ecker et al. (1989)]

in the elastic region:

$$F_{2,T}^{q,\nu}(t) = 0,$$

$$F_{2,T}^{q,\nu}(t) = -\frac{m_N}{2M_\pi} B_T^{\pi,q}(0) (F_1^{\nu}(t) + F_2^{\nu}(t)),$$

$$F_{3,T}^{q,\nu}(t) = \frac{m_N}{4M_\pi} B_T^{\pi,q}(0) F_2^{\nu}(t),$$

• combine with 1⁺⁻ and lattice normalizations to obtain full estimates for $\bar{q}\sigma^{\mu\nu}q$ matrix elements [Hoferichter, Kubis, JRE, Stoffer (2019)]

J. Ruiz de Elvira (UCM)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Chiral low-energy constants

	NLO	N ² LO	N ³ LO
<i>c</i> ₁ [GeV ⁻¹]	-0.74 ± 0.02	-1.07 ± 0.02	-1.11 ± 0.03
<i>c</i> ₂ [GeV ^{−1}]	1.81 ± 0.03	$\textbf{3.20} \pm \textbf{0.03}$	$\textbf{3.13} \pm \textbf{0.03}$
<i>c</i> ₃ [GeV ^{−1}]	-3.61 ± 0.05	-5.32 ± 0.05	-5.61 ± 0.06
<i>c</i> ₄ [GeV ^{−1}]	2.17 ± 0.03	3.56 ± 0.03	4.26 ± 0.04
$ar{d}_1 + ar{d}_2 [{ m GeV}^{-2}]$	—	1.04 ± 0.06	7.42 ± 0.08
ā₁ [GeV ⁻²]		-0.48 ± 0.02	-10.46 ± 0.10
ā₅[GeV ⁻²]	_	0.14 ± 0.05	0.59 ± 0.05
$ar{d}_{14} - ar{d}_{15} [{ m GeV}^{-2}]$	_	-1.90 ± 0.06	-12.18 ± 0.12
ē ₁₄ [GeV ⁻³]	_	_	0.89 ± 0.04
ē ₁₅ [GeV ⁻³]	—	—	-0.97 ± 0.06
ē ₁₆ [GeV ⁻³]	_	_	-2.61 ± 0.03
ē ₁₇ [GeV ⁻³]	—	—	0.01 ± 0.06
ē ₁₈ [GeV ⁻³]	—	—	-4.20 ± 0.05

- Subthreshold errors tiny, chiral expansion dominates uncertainty
- \bar{d}_i at N³LO increase by an order of magnitude
 - \hookrightarrow due to terms proportional to $g_A^2(c_3 c_4) = -16 \text{ GeV}^{-1}$
 - \hookrightarrow mimic loop diagrams with Δ degrees of freedom
- What's going on with chiral convergence?
 - \hookrightarrow look at convergence of threshold parameters with LECs fixed at subthreshold point

Convergence of the chiral series

	NLO	N ² LO	N ³ LO	RS	
$a_{0+}^+ [10^{-3} M_{\pi}^{-1}]$	-23.8	0.2	-7.9	-0.9 ± 1.4	
a_{0+}^{-} [10 ⁻³ M_{π}^{-1}]	79.4	92.9	59.4	85.4 ± 0.9	
a_{1+}^+ [10 ⁻³ M_{π}^{-3}]	102.6	121.2	131.8	131.2 ± 1.7	
a_{1+}^{-} [10 ⁻³ M_{π}^{-3}]	-65.2	-75.3	-89.0	-80.3 ± 1.1	
a_{1-}^{+} [10 ⁻³ M_{π}^{-3}]	-45.0	-47.0	-72.7	-50.9 ± 1.9	
a_{1-}^{-} [10 ⁻³ M_{π}^{-3}]	-11.2	-2.8	-22.6	-9.9 ± 1.2	
b_{0+}^+ [10 ⁻³ M_{π}^{-3}]	-70.4	-23.3	-44.9	-45.0 ± 1.0	
b_{0+}^{-} [10 ⁻³ M_{π}^{-3}]	20.6	23.3	-64.7	4.9 ± 0.8	

- N³LO results bad due to large Delta loops
- matching to ChPT with the explicit Δ's

 \hookrightarrow improvement of the chiral convergence

[Siemens, JRE, Epelbaum, Hoferichter, Krebs, Kubis, Meißner (2016)]

Conclusion: lessons for few-nucleon applications

 \hookrightarrow either include the Δ to reduce the size of the loop corrections or use LECs from subthreshold kinematics

 \hookrightarrow error estimates: consider chiral convergence of a given observable, difficult to assign a global chiral error to LECs

Chiral Low Energy Constants with Δ 's

	HB-NN		HB-	HB- <i>πN</i>		covariant	
N ² LO	Q ³	_е 3	Q ³	_е 3	Q ³	ε ³	
c ₁	-1.08(2)	-1.25(3)	-1.08(2)	-1.24(3)	-1.00(2)	-1.19(4)	
c ₂	3.26(3)	1.71(1.01)	3.26(3)	1.13(1.02)	2.55(3)	1.14(19)	
c3	-5.39(5)	-2.68(84)	-5.39(5)	-2.75(84)	-4.90(5)	-2.56(40)	
c ₄	3.62(3)	1.57(16)	3.62(3)	1.58(16)	3.08(3)	1.33(20)	
d ₁₊₂	1.02(6)	0.14(17)	1.02(6)	-0.07(18)	1.78(6)	0.62(16)	
d3	-0.46(2)	-0.84(14)	-0.46(2)	-0.48(15)	-1.12(2)	-1.45(5)	
d ₅	0.15(5)	0.80(7)	0.15(5)	0.47(6)	-0.05(5)	0.29(6)	
d ₁₄₋₁₅	-1.85(6)	-1.09(30)	-1.85(6)	-0.72(31)	-2.27(6)	-0.98(13)	
N ³ LO	Q ⁴	ε^4	Q ⁴	ε4	Q ⁴	ε4	
c ₁	-1.11(3)	-1.11(3)	-1.11(3)	-1.11(3)	-1.12(3)	-1.10(3)	
c ₂	3.61(4)	1.41(38)	3.17(3)	1.28(20)	3.35(3)	1.16(20)	
c3	-5.60(6)	-1.88(45)	-5.67(6)	-2.04(39)	-5.70(6)	-2.10(39)	
c ₄	4.26(4)	2.03(28)	4.35(4)	2.07(29)	3.97(3)	1.91(27)	
d ₁₊₂	6.37(9)	1.78(31)	7.66(9)	2.90(30)	4.70(7)	1.78(24)	
d3	-9.18(9)	-3.64(36)	-10.77(10)	-5.91(50)	-5.26(5)	-3.25(14)	
d ₅	0.87(5)	1.52(7)	0.59(5)	1.03(7)	0.31(5)	0.66(6)	
d ₁₄₋₁₅	-12.56(12)	-4.38(54)	-13.44(12)	-5.17(55)	-8.84(10)	-3.41(41)	
e ₁₄	1.16(4)	1.64(10)	0.85(4)	1.12(16)	1.17(4)	1.28(11)	
e ₁₅	-2.26(6)	-4.95(15)	-0.83(6)	-3.30(25)	-2.58(7)	-3.07(13)	
^e 16	-0.29(3)	4.21(16)	-2.75(3)	1.92(43)	-1.77(3)	1.71(17)	
e ₁₇	-0.17(6)	-0.44(6)	0.03(6)	-0.39(7)	-0.45(6)	-0.51(7)	
e ₁₈	-3.47(5)	1.34(29)	-4.48(5)	0.67(31)	-1.68(5)	1.30(17)	

< ロ > (型)

	HB-NN		HB- <i>πN</i>		covariant		RS
N ² LO	Q ³	ε ³	Q ³	ε ³	Q ³	_е 3	
$a_{0+}^+[10^{-3}M_{\pi}^{-1}]$	0.5	-9.8(10.9)	0.5	-0.4(9.2)	-14.8	1.0(17.3)	-0.9(1.4)
$a_{0+}^{-}[10^{-3}M_{\pi}^{-1}]$	92.2	92.7(1.0)	92.9	90.5(9)	89.9	81.7(1.6)	85.4(9)
$a_{1+}^{+}[10^{-3}M_{\pi}^{-3}]$	113.8	125.8(16.7)	121.7	127.2(18.4)	116.4	128.5(9.6)	131.2(1.7)
$a_{1+}^{-}[10^{-3}M_{\pi}^{-3}]$	-74.8	-77.4(2.5)	-75.5	-78.4(2.6)	-75.1	-79.7(3.0)	-80.3(1.1)
$a_{1-}^+[10^{-3}M_{\pi}^{-3}]$	-54.1	-53.4(14.1)	-47.0	-52.5(15.8)	-55.5	-52.5(8.5)	-50.9(1.9)
$a_{1-}^{-}[10^{-3}M_{\pi}^{-3}]$	-14.1	-13.1(2.7)	-2.5	-7.8(3.0)	-10.4	-9.7(4.1)	-9.9(1.2)
$b_{0+}^+[10^{-3}M_{\pi}^{-3}]$	-45.7	-38.1(9.6)	-22.1	-23.7(14.4)	-50.9	-34.7(12.1)	-45.0(1.0)
$b_{0+}^{-}[10^{-3}M_{\pi}^{-3}]$	35.9	26.4(1.0)	22.6	17.6(8)	21.6	14.2(2.0)	4.9(8)
N ³ LO	Q ⁴	ε^4	Q ⁴	ε^4	Q ⁴	ε^4	
$a_{0+}^+[10^{-3}M_{\pi}^{-1}]$	-1.5	-1.5(8.5)	-8.0	1.2(20.4)	-5.7	-0.8(10.3)	-0.9(1.4)
$a_{0+}^{-}[10^{-3}M_{\pi}^{-1}]$	68.5	96.3(2.0)	58.6	70.0(3.3)	83.8	83.6(1.9)	85.4(9)
$a_{1+}^{+}[10^{-3}M_{\pi}^{-3}]$	134.3	136.0(9.7)	132.1	135.2(8.7)	128.0	132.7(9.0)	131.2(1.7)
$a_{1+}^{-}[10^{-3}M_{\pi}^{-3}]$	-80.9	-80.0(3.4)	-90.1	-86.4(2.7)	-78.1	-81.1(3.6)	-80.3(1.1)
$a_{1-}^+[10^{-3}M_{\pi}^{-3}]$	-55.7	-47.5(10.5)	-73.7	-56.9(7.1)	-53.5	-51.4(7.9)	-50.9(1.9)
$a_{1-}^{-}[10^{-3}M_{\pi}^{-3}]$	-10.0	-5.6(4.9)	-23.7	-14.4(6.5)	-11.8	-10.4(5.7)	-9.9(1.2)
$b_{0+}^+[10^{-3}M_{\pi}^{-3}]$	-42.2	-31.4(8.1)	-44.5	-32.6(21.3)	-54.7	-33.9(8.5)	-45.0(1.0)
$b_{0+}^{-}[10^{-3}M_{\pi}^{-3}]$	-31.6	7.1(2.3)	-65.2	-34.1(5.7)	2.3	2.9(2.1)	4.9(8)

▲□▶▲□▶▲□▶▲□▶ □ シののの

• starting from the $\pi\pi$ unitarity relation

$$\operatorname{Im} t_J^I(t) = \sigma_\pi(t) |t_J^I(t)|^2$$

• defining the $\pi\pi$ residues as

$$t_{0,\parallel}^{0}(t) = \frac{g_{S\pi\pi}^{2}}{16\pi(t_{S}-t)}, \qquad t_{1,\parallel}^{1}(t) = \frac{g_{\rho\pi\pi}^{2}(t-t_{\pi})}{48\pi(t_{\rho}-t)}$$

with $S = f_0(500)$ or $f_0(980)$

taking into account the unitarity relations for the scalar and vector form factors of the pion

$$\operatorname{Im} F_{\pi}^{\theta}(t) = \sigma_{\pi}(t) [t_{0}^{0}(t)]^{*} F_{\pi}^{\theta}(t), \quad \operatorname{Im} F_{\pi}^{V}(t) = \sigma_{\pi}(t) [t_{1}^{1}(t)]^{*} F_{\pi}^{V}(t)$$

• and writing the form factors on the second sheet as

$$F_{\pi,II}^{\theta}(t) = \sqrt{\frac{2}{3}} \frac{F_{S}g_{S\pi\pi}t_{S}}{t_{S}-t}, \quad F_{\pi,II}^{V}(t) = \frac{g_{\rho\pi\pi}}{g_{\rho\gamma}} \frac{t_{\rho}}{t_{\rho}-t}$$

one has

$$\frac{F_S}{g_{S\pi\pi}} = i\sqrt{\frac{3}{2}} \frac{\sigma_\pi(t_S)}{8\pi t_S} F^{\theta}_{\pi,\mathsf{l}}(t_S), \quad \frac{1}{g_{\rho\gamma}g_{\rho\pi\pi}} = i\frac{\sigma^3_\pi(t_\rho)}{24\pi} F^V_{\pi,\mathsf{l}}(t_\rho)$$

Nucleon resonances: conventions for t-channel amplitudes

• in the same way, starting from the unitarity relations

$$\operatorname{Im} f_{\pm}^{J}(t) = \sigma_{\pi}(t) [t_{J}^{I}(t)]^{*} f_{\pm}^{J}(t)$$

defining the nucleon residues as

$$f_{+,||}^{0}(t) = -\frac{p_{t}^{2}}{2\pi\sqrt{6}}\frac{g_{SNN}g_{S\pi\pi}}{t_{S}-t}, \quad f_{+,||}^{1}(t) = \frac{m_{N}g_{\rho\pi\pi}}{12\pi}\frac{g_{\rho NN}^{(1)} + \frac{t_{\rho}}{4m_{N}^{2}}g_{\rho NN}^{(2)}}{t_{\rho}-t}, \quad f_{-,||}^{1}(t) = \frac{\sqrt{2}\,g_{\rho\pi\pi}}{12\pi}\frac{g_{\rho NN}^{(1)} + g_{\rho NN}^{(2)}}{t_{\rho}-t}$$

• taking the unitarity relations for the scalar and vector form factor of the nucleon

$$\mathrm{m}\,\theta_{N}(t) = \frac{\sigma_{\pi}(t)}{4m_{N}^{2} - t} \frac{3}{2} \left[F_{\pi}^{\theta}(t) \right]^{*} f_{+}^{0}(t), \quad \mathrm{Im}\,G_{E}^{\nu}(t) = \frac{\sigma_{\pi}(t)q_{t}^{2}}{2m_{N}} \left[F_{\pi}^{V}(t) \right]^{*} f_{+}^{1}(t), \quad \mathrm{Im}\,G_{M}^{\nu}(t) = \frac{\sigma_{\pi}(t)q_{t}^{2}}{2\sqrt{2}} \left[F_{\pi}^{V}(t) \right]^{*} f_{-}^{1}(t),$$

• one obtains for the scalar channel

$$\frac{g_{SNN}}{g_{S\pi\pi}} = i\sqrt{6} \frac{\sigma_{\pi}(t_S)}{4m_N^2 - t_S} f^0_{+,1}(t_S),$$

and for the vector

$$\frac{g_{\rho NN}^{(1)}}{g_{\rho \pi \pi}} = -2i\sigma_{\pi}(t_{\rho})\frac{m_{N}q_{t}^{2}}{p_{t}^{2}}\left[f_{+,1}^{1}(t_{\rho}) - \frac{t_{\rho}}{4\sqrt{2}m_{N}}t_{-,1}^{1}(t_{\rho})\right]$$

$$\frac{g_{\rho NN}^{(2)}}{g_{\rho \pi \pi}} = 2i\sigma_{\pi}(t_{\rho})\frac{m_{N}q_{t}^{2}}{p_{t}^{2}}\left[f_{+,1}^{1}(t_{\rho}) - \frac{m_{N}}{\sqrt{2}}t_{-,1}^{1}(t_{\rho})\right]$$

J. Ruiz de Elvira (UCM)

(3)