

Left-hand cut problem in lattice QCD and an EFT-based solution

Lu Meng (孟 璐)

Ruhr-Universität Bochum

27 Aug. 2024, Bochum

Base on JHEP10(2021)051, PoS LATTICE2022 (2023) 201 and PRD109(2024), L071506 Together with V. Baru, E. Epelbaum, A. Filin, A.M. Gasparyan

Lattice QCD

- QCD is the fundamental theory of the strong interaction
- To get the hadron-hadron interaction from the first principle?

Nuclear force

Hadronic molecules

• Lattice QCD: on a lattice of points in space and time in a finite volume (FV)

Lüscher's formula

 $\psi_k(r) \sim \frac{e^{i\delta(k)}\sin[kr+\delta(k)]}{kr}.$

 $\boldsymbol{p} = rac{2\pi}{L} \boldsymbol{n}, \qquad \boldsymbol{n} \in Z^3$

Exponentially suppressed effect: $e^{-L/R} \sim e^{-m_{\pi}L}$

Require: $m_{\pi}L > 4 \Rightarrow L > 5.7$ fm

 $\frac{1}{2} \gg R$

Interaction

- ► Left-hand cut (lhc) problem
- ► Partial-wave mixing effects

NN, D^*D systems...

Long-range interaction and small box???

• Left-hand cut (lhc) from the one-pion exchange interaction

$$\begin{array}{c} \textbf{Left-hand cut} \\ \textbf{on-shell pion} \end{array} \quad V(r) = \frac{e^{-mr}}{r}, \ V(\vec{p},\vec{p'}) = \frac{1}{(\vec{p'}-\vec{p})^2 + m^2} \end{array}$$

• Partial wave decomposition, e,g. S-wave

$$V_{l=0}(p,p') = \int_{-1}^{1} dz \frac{1}{p^2 + p'^2 - 2pp'z + m^2} = -\frac{1}{2pp'} \log\left(\frac{(p-p')^2 + m^2}{(p+p')^2 + m^2}\right)$$
Multivalued function with cuts

• On-shell
$$p = p' = k$$
, $k^2 = 2\mu E$

$$V_{l=0}(k,k) = \int_{-1}^{1} dz \frac{1}{2k^2(1-z) + m^2}, \qquad 2k^2(1-z) + m^2 = 0 \Rightarrow z = \frac{m^2}{2k^2} + 1, \quad -1 < z < 1 \Rightarrow k^2 < -\frac{m^2}{4}$$

b Branch point: $k^2 < -\frac{m^2}{4}$

			Mathefamily Im (T _{lab})	e.g., NN scattering
3π-cut	2π-cut	1π-cut	unitarity cut	inelasticity
-77 MeV	-39 MeV	-10 MeV		280 MeV Re (T _{lab})

Left-hand cut problem

Inc in the IFV Im E ► Effective range expansion (ERE): $2\pi \operatorname{cut} 1\pi \operatorname{cut}$ $K^{-1}(p) = p \cot \delta(p) = \frac{1}{a} + \frac{1}{2}rp^2 + \cdots$ Re E ► Radius of convergence of ERE Meng-Lin's talk *NN*: Baru:2015ira, Baru:2016evv DD*: Du:2023hlu Ihc problem of Lüscher formula $\det [G_F^{-1}(L, E) - K(E)] = 0$ — Re Real K-matrix in the IFV — Im $K = V + VG^{\mathcal{P}}K$ V(k,k)For $k^2 > -\frac{m^2}{4}$, K-matrix is real lhć For $k^2 < -\frac{m^2}{4}$, Im $K \neq 0$

Maxwell, Akaki, Sebastian's talks

Lu Meng (孟璐) | Ihc problem in lattice QCD: Tcc(3875) from FV energy levels

1.0

0.5

-0.5

-1.0

0.0

 k^{2}/m^{2}

Left-hand cut problem

Left-hand cut problem in LQCD

T_{cc} state in lattice QCD

T_{cc} lattice QCD simulations

Padmanath:2022cvl

• LQCD setting: $m_{\pi} \approx 280$ MeV, $m_D \approx 1927$ MeV, $m_{D^*} \approx 2049$ MeV, $L \approx 2.07, 2.76$ fm, $a \approx 0.086$ fm

• Some quick estimations

►
$$m_{\text{eff}}^2 = m_{\pi}^2 - (m_{D^*} - m_D)^2 > 0, m_{\text{eff}} \approx 252 \text{ MeV}$$

► $p_{\text{lhc}}^2 \approx -\left(\frac{m_{\text{eff}}}{2}\right)^2 = -(126 \text{ MeV})^2$
► $p_{\text{rhc3}}^2 \approx 2\mu_{DD^*}(2m_D + m_{\pi} - m_D - m_{D^*}) \approx (560 \text{ MeV})^2$

- A conventional procedure to the IFV:
 - ► Using Lüscher formula to get phase shift
 - ► Use ERE to parameterize *K*-matrix
- Conclusion: virtual states
- Limitations
 - ► $m_{\rm eff}L = 2.6, 3.5$ exponential effect can be important
 - ► left-hand cut

Lüscher formula, effective range expansion

Other lattice results: Cheung:2017tnt, Junnarkar:2018twb, Chen:2022vpo, Lvu:2023xro, Whyte:2024ihh, Lu Meng (孟璐) | Ihc problem in lattice QCD: Tcc(3875) from FV energy levels

T_{cc} lattice QCD simulations

Padmanath:2022cvl

• LQCD setting: $m_{\pi} \approx 280$ MeV, $m_D \approx 1927$ MeV, $m_{D^*} \approx 2049$ MeV, $L \approx 2.07, 2.76$ fm, $a \approx 0.086$ fm

• Some quick estimations

$$\mathbf{P}_{eff}^{2} = m_{\pi}^{2} - (m_{D^{*}} - m_{D})^{2} > 0, \ m_{eff} \approx 252 \text{ MeV}$$

$$\mathbf{P}_{lhc}^{2} \approx -\left(\frac{m_{eff}}{2}\right)^{2} = -(126 \text{ MeV})^{2}$$

$$\mathbf{P}_{rhc3}^{2} \approx 2\mu_{DD^{*}}(2m_{D} + m_{\pi} - m_{D} - m_{D^{*}}) \approx (560 \text{ MeV})^{2}$$

- A conventional procedure to the IFV:
 - ► Using Lüscher formula to get phase shift
 - ► Use ERE to parameterize *K*-matrix
- Conclusion: virtual states
- Limitations
 - ► $m_{\rm eff}L = 2.6, 3.5$ exponential effect can be important
 - left-hand cut
 - Lüscher formula, effective range expansion

Our strategy

- Lüscher formula:
 - The E_{FV} s are only related to the **on-shell** T-matrix
 - ► The off-shell effect is exp. suppr. and thus neglectable
- The lhc problem of the Lüscher formula: off-shell effect, exp. suppr. effect
- Schrödinger Eq. in the IFV to get the **bound state** solutions

$$\frac{p^2}{2\mu}\psi(\boldsymbol{p}) + \int \frac{d^3\boldsymbol{p}}{(2\pi)^3}V(\boldsymbol{p},\boldsymbol{p}')\psi(\boldsymbol{p}) = E\psi(\boldsymbol{p})$$

Off-shell, for E < 0

► Works well even below the left-hand cut

For the p, p' > 0, no lhc in potential

$$V_{l=0}(p,p') = \int_{-1}^{1} dz \frac{1}{p^2 + p'^2 - 2pp'z + m^2} = -\frac{1}{2pp'} \log\left(\frac{(p-p')^2 + m^2}{(p+p')^2 + m^2}\right)$$

• FV energy levels are "bound states" trapped by the potential well

$$\int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{n}$$

• Basic idea: using V to connected FV and p FV; FV effect: Schrödinger-like Eq.

Our strategy

• Hamiltonian method in plane wave basis + Chiral effective field theory

Chiral EFT

- Symmetry from QCD
 - Chiral symmetry and its spontaneous breaking
- Weinberg power counting
 - Systemic calculation, controllable truncation error Reinert:2017usi

$$V(\vec{p}', \vec{p}) = V_{\text{contact}} + V_{1\pi} + V_{2\pi}$$

- Great success in the nuclear force
- Semilocal momentum-space regularization

$$V_{1\pi}(\vec{p}',\vec{p}) = -\frac{g_A^2}{4F_\pi^2} \left(\frac{\vec{\sigma}_1 \cdot \vec{q}\vec{\sigma}_2 \cdot \vec{q}}{q^2 + m_\pi^2} + C(m_\pi)\vec{\sigma}_1 \cdot \vec{\sigma}_2\right) e^{-\frac{q^2 + m_\pi^2}{\Lambda^2}}$$

- Long-range interaction: $V_{1\pi}$ is known
- Short-range interaction: contact interaction
 - ► Unknown low energy constants (LECs)
 - ▶ fitting lattice QCD data

• Boundary conditions in the cubic box

$$\psi(\mathbf{x}_1, \mathbf{x}_2) = \psi(\mathbf{x}_1 + \mathbf{n}_1 L, \mathbf{x}_2 + \mathbf{n}_2 L)$$

$$oldsymbol{p}_1+oldsymbol{p}_2=oldsymbol{P},\quad oldsymbol{p}_1=rac{2\pi}{L}oldsymbol{n},\quad oldsymbol{P}=rac{2\pi}{L}oldsymbol{d},\quad oldsymbol{n},oldsymbol{d}\in Z^3$$

- The rotation symmetry is broken: $SO(3) \rightarrow O_h$
 - \blacktriangleright {*l*, *m*} are not good quantum numbers to label states
 - ► Partial wave mixing, for $l \neq l'$ and $m \neq m'$,

► The FV energy from lattice: irreducible representations (irreps.) of O_h

 $\{l,m\} \to \{A_1,A_2,E,T_1,T_2\}$

- Why not use the plane wave (with discrete momentum) basis directly?
- Finite volume energy levels

 $\det \left(\mathbb{G}^{-1} - \mathbb{V} \right) = 0 \to \det \left(\mathbb{H} - E\mathbb{I} \right) = 0,$

 $\mathbb{H} \Rightarrow \operatorname{diag}\{\mathbb{H}_{\Gamma_i}, \mathbb{H}_{\Gamma_j}, \ldots\} \Rightarrow \quad \mathbb{H}_{\Gamma} \boldsymbol{v} = E_{\Gamma} \boldsymbol{v} \quad \Gamma: \text{ irreps.}$

- Accelerate calculation: subspace learning, specifically eigenvector continuation
 Frame:2017fah
- Extra advantage: partial wave mixing effect

- Contact interaction: $V(\boldsymbol{p}, \boldsymbol{p}') = C_S + C_1 \boldsymbol{q}^2 + C_2 \boldsymbol{k}^2$
- Only contribute to S-wave and P-wave

- ChEFT nuclear force: NNLO
- S=0, d = (0,0,0), even parity
- QCs with partial mixing effect
- L={ 3.0,3.1,3.3,3.5,4.0,4.5,5.0, 6.0,7.0,8.0} fm

The discrepancy
 Small box
 Small J_{max} truncation

 $E_{\rm lab}$ [GeV]

Numerical calculation

• The energy levels of $A_1^-(0)$ is high, relativistic formalism

$$T(\mathbf{p}, \mathbf{p}') = V(\mathbf{p}, \mathbf{p}') + \int \frac{d^3 \mathbf{q}}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}) \frac{1}{2w_1 w_2} \frac{(w_1 + w_2)}{P_0^2 - (w_1 + w_2)^2 + i\epsilon} T(\mathbf{q}, \mathbf{p}')$$

$$w_i = \sqrt{m_i^2 + \mathbf{q}^2}$$

$$G = i \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(P - q)^2 - m_1^2 + i\epsilon} \frac{1}{q^2 - m_2^2 + i\epsilon}$$

• Replace integral into summation to get $\mathbb{T} = \mathbb{V} + \mathcal{J}\mathbb{V}.\mathbb{G}.\mathbb{T}$

$$\int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \to \mathcal{J} \int \frac{d^3 \boldsymbol{q}_{box}}{(2\pi)^3} \to \mathcal{J} \sum_{\boldsymbol{n}} \frac{1}{L^3}$$

 \mathcal{J} : is the Jacobian determinant of the Lorentz boost

Li:2021mob

• Get the poles

$$\det \left(\mathbb{H} - \lambda \mathbb{I}\right) = 0 \to \mathbb{H} \boldsymbol{v} = \lambda \boldsymbol{v},$$

Contact terms to NLO

The reg

▶ In present calculation: LO and NLO ${}^{3}S_{1}$ contact terms, NLO ${}^{3}P_{0}$

 \triangleright ${}^{3}S_{1}$ - ${}^{3}D_{1}$ transition term and ${}^{3}P_{2}$ are included to estimate the systemic uncertainties

- Separable regulator: $e^{-\frac{p^n+p'^n}{\Lambda^n}}$, n = 2,4,6
- One-pion exchange interaction
 - ► Pion propagator: static approximation

$$D \approx -k^2 - [m_{\pi}^2 - (M_{D^*} - M_D)^2] + i\epsilon$$

Semilocal momentum-space regularization

$$\mathcal{V}(k) = -\frac{g^2}{4F_{\pi}} \left[\frac{\mathbf{k} \cdot \mathbf{\epsilon}'^* \mathbf{k} \cdot \mathbf{\epsilon}}{\mathbf{k}^2 + u^2} + C_{sub} \mathbf{\epsilon}'^* \cdot \mathbf{\epsilon} \right] e^{-\frac{k^2 + u^2}{\Lambda^2}}$$

$$C_{sub} = -\frac{\Lambda(\Lambda^2 - 2u^2) + 2\sqrt{\pi}u^3 e^{\frac{u^2}{\Lambda^2}} \operatorname{erfc}(\frac{u}{\Lambda})}{3\Lambda^3}$$
The regulator will not change the long-range behavior
The short-range part of OPE is subtracted: $V_{\epsilon,\epsilon}(r=0) = 0$

Reinert:2017usi

F_{π} and g

- F_{π} and $g_{D^*D\pi}$ at $m_{\pi} = 280$ MeV are determined by lattice QCD data, physical values by either linear extrapolation or chiral extrapolation
- $F_{ph} = 92.1 \text{ MeV}, \ F_0 = 85 \text{ MeV}, \text{ chiral extrapolation}, \ \xi = m/m^{ph}$ $f_{\pi}(\xi) = f_{\pi}^{\text{ph}} \left[1 + \left(1 - \frac{f_0}{f_{\pi}^{\text{ph}}} \right) (\xi^2 - 1) - \frac{(m_{\pi}^{\text{ph}})^2}{8\pi^2 f_0^2} \xi^2 \log \xi \right]$

Du:2023hlu,Becirevic:2012pf

- Three extrapolations give the consistent results
 - ► The g is slightly smaller than the value in Ref. [Du:2023hlu]

▶ $g = 0.517 \pm 0.015$ for a = 0.086 fm

 $\Lambda = 0.9$ GeV, only contact terms

Results using Lüscher's QCs
Padmanath:2022cvl χ^2 /dof=3.7/5, $E_{\text{pole}}^{3S_1} = -9.9_{-7.2}^{+3.6} \text{ MeV}$ $a_{_{S_1}} = 1.04(29) \text{fm}, \quad r_{_{S_1}} = 0.96^{+0.18}_{-0.20} \text{fm}$ $a_{P_0} = 0.076^{+0.008}_{-0.009} \text{fm}^3$, $r_{P_0} = 6.9(2.1) \text{fm}^{-1}$

• Our results

 $a_{3_{S_{1}}}, r_{3_{S_{1}}}, a_{3_{P_{0}}}, r_{3_{P_{0}}}$

Three parameters:

 $\Lambda = 0.9$ GeV, contact terms+OPE

Chiral dynamics

Results using Lüscher's QCs
Padmanath:2022cvl χ^2 /dof=3.7/5, $E_{\text{pole}}^{3S_1} = -9.9_{-7.2}^{+3.6} \text{ MeV}$ $a_{3_{S_1}} = 1.04(29) \text{fm}, \quad r_{3_{S_1}} = 0.96^{+0.18}_{-0.20} \text{fm}$ $a_{P_0} = 0.076^{+0.008}_{-0.009} \text{fm}^3$, $r_{P_0} = 6.9(2.1) \text{fm}^{-1}$

• Our results

Three parameters: LO and NLO ${}^{3}S_{1}$, NLO ${}^{3}P_{0}$ LECs 0.006 $a = 0.497 \pm 0.007 \text{ fm}^3$ $r = 5.629 \pm 0.190 \text{ fm}^{-1}$ 0.005 0.004 $p^3 \cot(\delta_1)/E_{DD}^3$ lhc: 0.003 0.002 0.001

Four parameters:

 $a_{3_{S_{1}}}, r_{3_{S_{1}}}, a_{3_{P_{0}}}, r_{3_{P_{0}}}$

• Resonance with 85% probability within the 1σ uncertainty

Rather than the virtual state from Lüscher QC+ERE

- Modified effective range expansion
 - ▶ R. Bubna, H-W. Hammer, F. Müller, J-Y. Pang, A. Rusetsky and J-J. Wu,
 - *JHEP* 05 (2024) 168
 - Talk of Rusetsky in lattice2024
- Modified Lüscher quantization condition
 - ► A. Raposo and M. Hansen, *JHEP* 08 (2024) 075
 - Talk of Raposo in lattice2024
- Using three-particle formalism
 - M. Hansen, F. Romero-López and S. Sharpe, JHEP 06 (2024) 051
 - ► Talk of S. Dawid in lattice2024
- HAL QCD approach
 - ► Lyu et al, PhysRevLett.131.161901,
 - ► Talk of S.Aoki in lattice2024

Also working with Schrodinger-type equation No Ihc problem

Maxwell, Akaki, Sebastian's talks

Summary and Outlook

Validation of Lüscher's formula

(1) e^{-mL} effect can be neglected (2) Considering the PW mixing effect (3) E^{FV} well above lhc

④ERE works in IFV Du:2023hlu

• Our formalism

• T_{cc} lattice data

- $\blacktriangleright E^{FV}$ below the left-hand cut
- ► Lattice T_{cc} at m_{π} = 280 MeV, more likely resonance
- ► The possible partial wave mixing effect
- Important one-pion exchange interaction, Chiral dynamics

T_{cc} is a playground

- Left-hand cut
 Finite volume
- Three-body effect
- Infinite volume
- Isospin violation effect

• . . .

- Light quark mass (pion mass) dependence Michael Abolnikov's talk 2407.04649
- Heavy quark mass dependence

Thanks for your attentions!

Back up

$T_{cc}(3875)^+$ state

- $T_{cc}(3875)^+$ was observed in 3-body final states: $D^0D^0\pi^+$ LHCb Collaboration
- Very close to $D^0 D^{*+}$ thresholds: $\delta m_U \approx -360 \text{keV}, \Gamma \approx 48 \text{ keV}$
- Exotic hadrons: minimal quark content: $cc\bar{u}\bar{d}$
- Good candidates of D^0D^{*+} molecule

3-body dynamics could be important

Ihcb:2021vvq, Ihcb:2021auc, Du:2021zzh, Meng:2021jnw...

Towards a practical approach: eigenvector continuation

- Plane wave basis+Eigenvector continuation
 - ► Eigenvector continuation (EC) with subspace learning
- To fit or quantify uncertainty: solve eigenvalue problem with different $\{c_i\}$ repeatedly
- EC basis: eigenvectors from a selection of parameter sets $\{c_i\}_1$, $\{c_i\}_2$,... (training point)
- \bullet Naturalness of LEC in EFT (\sim 1) makes the EC more reliable
- dim is linear function

$$\lim^{EC} = \frac{p_{max}}{2\pi/L} \sim \mathcal{O}(10), \quad p_{max} \approx 0.6 \text{ GeV}$$

- The subspace learning is the one-time cost
- Make the calculation fast and accurate

Cutoff dependence of χ^2

- 3 LECs: LO and NLO ${}^{3}S_{1}$ contact terms, NLO ${}^{3}P_{0}$
- In $V_{\rm ctc}$ fit, the P-wave dominate states control Λ -dependence of the χ^2
 - ► The shape of the of $k^3 \cot \delta_1$ is determined by regulator and cutoff
 - Sensitive to Λ
- The $V_{\rm ctc}$ + $V_{1\pi}$ fit is stable with Λ
- The $V_{\rm ctc}$ + $V_{1\pi}$ fit is even better than QCs

Cutoff dependence of phase shift

Two approaches

 Hansen's approach Raposo:2023oru ► FV: lattice data fix <i>R</i>^{os} 	 Our approach FV: lattice data fix contact terms 		
$\det_{\mathbf{k}^{\star}\ell m} \left[S(P_j, L)^{-1} + \xi^{\dagger} \overline{\mathcal{K}}^{os}(P_j) \xi + 2g^2 \mathcal{T}(P_j) \right] = 0$	$\det[\mathbb{G}^{-1}(E) - \mathbb{V}] = 0.$		
► IFV: solve a integral equation	►IFV: solve a integral equation		
$\mathcal{M}^{aux}(P,p,p') = \mathcal{K}^{\mathcal{T}}(P,p,p') - \frac{1}{2} \int \frac{d^3 \mathbf{k}^{\star}}{(2\pi)^3} \frac{\mathcal{M}^{aux}(P,p,k) H(\mathbf{k}^{\star}) \mathcal{K}^{\mathcal{T}}(P,k,p')}{4\omega_N(\mathbf{k}^{\star}) [(\mathbf{k}^{\star}_{os})^2 - (\mathbf{k}^{\star})^2 + i\epsilon]},$	$T(\boldsymbol{p}, \boldsymbol{p}', E) = V(\boldsymbol{p}, \boldsymbol{p}') + \int \frac{d^3\boldsymbol{q}}{(2\pi)^3} V(\boldsymbol{p}, \boldsymbol{q}) G(\boldsymbol{q}, E) T(\boldsymbol{q}, \boldsymbol{p}', E).$		
$\begin{aligned} \mathcal{K}^{\mathcal{T}}(P, p, p') &= \overline{\mathcal{K}}^{os}(P, p, p') + 2g^{2}\mathcal{T}(P, p, p') ,\\ S_{\mathbf{k}^{\star}\ell m, \mathbf{k}'^{\star}\ell'm'}(P, L) &= \frac{1}{2L^{3}} \frac{4\pi Y_{\ell m}(\hat{\mathbf{k}}^{\star}) Y_{\ell'm'}^{\star}(\hat{\mathbf{k}}^{\star}) \delta_{\mathbf{k}^{\star}\mathbf{k}'^{\star}} \mathbf{k}^{\star} ^{\ell+\ell'} e^{-\alpha[(\mathbf{k}^{\star})^{2} - (\mathbf{k}^{\star}_{\mathrm{os}})^{2}]}{4\omega_{N}(\mathbf{k}) \left[(k_{\mathrm{os}}^{\star})^{2} - (\mathbf{k}^{\star})^{2}\right]} , \end{aligned}$	$V_{EFT} = \frac{\frac{D^*}{D}}{\frac{D}{D^*}} + \frac{D^*}{D} + \frac{D^*}{D^*} + \frac{D^*}{D^*}$ $\mathbb{G}(E) = \frac{\mathcal{J}(\boldsymbol{q}_n)}{L^3} G(\boldsymbol{q}_n, E) \delta_{\boldsymbol{n}', \boldsymbol{n}}, \mathbb{V} = V(\boldsymbol{q}_n, \boldsymbol{q}_{n'})$		
$\mathcal{T}_{\boldsymbol{k}^{*}\ell m, \boldsymbol{k}^{\prime*}\ell^{\prime}m^{\prime}}(P) = -\frac{1}{4\pi \boldsymbol{k}^{*} ^{\ell} \boldsymbol{k}^{\prime*} ^{\ell^{\prime}}} \int d\Omega_{\hat{\boldsymbol{k}^{*}}} d\Omega_{\hat{\boldsymbol{k}^{\prime*}}} Y_{\ell m}(\hat{\boldsymbol{k}^{*}}) Y_{\ell^{\prime}m^{\prime}}^{*}(\hat{\boldsymbol{k}^{\prime*}}) \times \frac{1}{(p^{\prime}-p)^{2}-M_{\pi}^{2}}$	$G(\mathbf{q}, E) = i \int \frac{dq^0}{2\pi} \frac{1}{(P-q)^2 - m_1^2 + i\epsilon} \frac{1}{q^2 - m_2^2 + i\epsilon}$		
$\omega_N(p)^2 = m_N^2 + p^2, p = (\omega_N(k^*), k^*), p' = (\omega_N(k^{*\prime}), k^{*\prime})$	$=\frac{1}{4\omega_1\omega_2}\left(\frac{1}{E-\omega_1-\omega_2}-\frac{1}{E+\omega_1+\omega_2}\right)$		
$\xi = 1$ Model-independent? You have to choose a parameterization of $\overline{\mathcal{R}}^{os}$: ERE To some how, the ERE is equivalent to the contact EFT	$=\frac{1}{2\omega_1\omega_2}\frac{(\omega_1+\omega_2)}{E^2-(\omega_1+\omega_2)^2+i\epsilon},$		

• Expanding it in partial wave (PW) basis

$$\det[G_F - K^{-1}] = 0, \Rightarrow \det[M_{l'm',lm} - \delta_{ll'}\delta_{mm'}\cot\delta_l] = 0$$

► Determinate equation of a matrix with infinite dimensions.

- Truncate at some l_{max}
- Reduce to irreps. Γ_i of point group:: det $\left[M_{ln,l'n'}^{(\Gamma,P)} \delta_{ll'}\delta_{nn'}\cot\delta_l\right] = 0$
- Example $\Gamma = A_1^+$, w_{lm} depends on *E* but independent on *V*

$$\det \left[M_{ln,l'n'}^{(\Gamma,\boldsymbol{P})} - \delta_{ll'}\delta_{nn'}\cot\delta_l \right] = 0, \quad M^{(A_1^+,\boldsymbol{d})} = \begin{bmatrix} w_{00} & -\sqrt{5}w_{20} & \cdots \\ -\sqrt{5}w_{20} & w_{00} + \frac{10}{7}w_{20} + \frac{18}{7}w_{40} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
Bernard:2008ax

- Truncate at $l_{max} = 0$, one-to-one relation: $\delta_0(E^{FV}) \sim E^{FV}$
- Truncate at $l_{max} > 0$, no one-to-one relation
 - ► E.g. $\{E_1^{FV}, E_2^{FV}\} \Rightarrow \{\delta_S(E_1^{FV}), \delta_S(E_2^{FV}), \delta_D(E_1^{FV}), \delta_D(E_2^{FV}) \dots\}$
 - One has to parameterize the K-matrix: e.g. effective range expansions (ERE)

Luscher:1990ux,Rummukainen:1995vs,Feng:2004ua,Kim:2005gf,Fu:2011xz,Polejaeva:2012ut,Leskovec:2012gb,Gockeler:2012yj,...

Moving systems

• Moving system in the box
$$P = \frac{2\pi}{L} d \neq 0$$

- ► For LQCD, changing box size is expensive
- ► Calculate E^{FV} of moving two-body systems in a box

Rummukainen:1995vs,Leskovec:2012gb

• Box frame (BF) p and center of mass frame (CMF) p^*

► BF:
$$p = \frac{2\pi}{L}n$$
; CMF: $p^* = \gamma^{-1}\left(p_{\parallel} - \frac{A}{2}P\right) + p_{\perp}$

For moving systems with $m_1 \neq m_2$, states with different parities could mix

•
$$d = (0,0,1)$$
, D_{4h} group for $m_1 = m_2$, C_{4v} group for $m_1 \neq m_2$

• d = (1,1,0), ...

Including SD transition terms

Including 3P2 term

Lippmann-Schwinger equation in the finite volume Luscher:1990ux,Polejaeva:2012ut

$$T^{L}(\boldsymbol{p}, \boldsymbol{q}; z) = V(\boldsymbol{p}, \boldsymbol{q}) + \int \frac{d^{3}\boldsymbol{k}}{(2\pi)^{3}} V(\boldsymbol{p}, \boldsymbol{q}) G_{0}^{L}(\boldsymbol{k}; z) T(\boldsymbol{k}; z)$$
$$G_{0}^{L}(\boldsymbol{k}, z) = (\frac{2\pi}{L})^{3} \sum_{\boldsymbol{p} \in \frac{2\pi}{L} \boldsymbol{n}} \frac{2\mu \delta^{3}(\boldsymbol{p} - \boldsymbol{k})}{q_{0}^{2} - \boldsymbol{p}^{2}} = \text{P.V.} \frac{2\mu}{q_{0}^{2} - \boldsymbol{k}^{2}} + G_{F}(\boldsymbol{k}, z) = G_{K}(\boldsymbol{k}, z) + G_{F}(\boldsymbol{k}, z)$$

with $z = m_1 + m_2 + \frac{q_0^2}{2\mu}$

- The "=" relation is valid up to the exponentially suppressed terms in L
- *K* matrix in the infinite volume: $K = V + VG_K K$

$$T^L = V + V(G_K + G_F)T^L = K + KG_FT^L$$

• E^{FV} corresponding to poles of T^L : interaction-independent form $det[1 - KG_F] = 0$, or $det[G_F - K^{-1}] = 0$ **Detailed derivation of Lüscher's formula**

Note: all the \int should be treated in the sense of P.V.

• Finite volume levels

 $\det \left(\mathbb{G}^{-1} - \mathbb{V} \right) = 0 \to \det \left(\mathbb{H} - E\mathbb{I} \right) = 0,$

 \blacktriangleright Reduce the \mathbbm{H} according to irreducible representations (irreps) of the point group

 $\mathbb{H} \Rightarrow \operatorname{diag}\{\mathbb{H}_{\Gamma_i}, \mathbb{H}_{\Gamma_j}, \ldots\} \Rightarrow \quad \mathbb{H}_{\Gamma} \boldsymbol{v} = E_{\Gamma} \boldsymbol{v}$

Accelerate calculation: subspace learning

specifically eigenvector continuation

• For moving systems, elongated boxes, particles with arbitrary spin...

• Similar approaches:

Momentum lattice (Doring:2011ip), Hamiltonian EFT(Wu:2014vma, Liu:2015kt

• Using plane wave + reducing to irreps of point group +EC is unique

• Extra advantage: partial wave mixing effect

Hamiltonian approach in Plane wave basis: $|p_n,\eta angle$

• Seven patterns of representation space $\{n_1, n_2, n_3\}_{dim}$ for O_h group

 $\Rightarrow \ \{0,0,0\}_{1\times 3}, \{0,0,a\}_{6\times 3}, \{0,a,a\}_{12\times 3}, \{0,a,b\}_{24\times 3}...$

• Reduce to irreducible representations (irreps): projection operator

e.g. textbook by M.Dresselhaus et.al

$$\hat{P}_{\alpha\beta}^{\Gamma_a} \equiv \sum_{g_i \in G} \frac{N(\Gamma_a)}{n_G} R_{\alpha\beta}^{\Gamma_a}(g_i)^* \hat{D}(g_i), \quad \hat{P}_{\alpha\alpha'}^{\Gamma_a} |\psi\rangle = a_{\alpha'}^{\Gamma_a} |\Gamma_a, \alpha\rangle.$$

- An example: $\{0, 0, a\}_{6 \times 3} = 2T_1^+ \oplus T_2^+ \oplus A_1^- \oplus E_1^- \oplus T_1^- \oplus T_2^-$
- For moving systems, elongated boxes, particles with arbitrary spin...

Symmetric group (character table) $\xrightarrow{\hat{P}^{\Gamma}}$ unitary irrep matrices $\xrightarrow{\hat{P}_{\alpha\beta}^{\Gamma}}$ rep space $|p_n\rangle \rightarrow$ irreps

• dim of the \mathbb{H}_{Γ} : cubic function of L^{-1}

$$\dim \sim \left(\frac{\Lambda_{\rm UV}}{2\pi/L}\right)^3 \times \frac{1}{10} \sim \mathcal{O}(1000)$$