Status of two-baryon scattering in lattice QCD

Jeremy R. Green

Zeuthen Particle Physics Theory, DESY

The 11th International Workshop on Chiral Dynamics Ruhr University Bochum, Germany

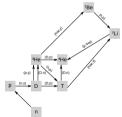
NN interaction (and *NNN*) leads to nuclei. How fine tuned is the universe?

NN interaction (and *NNN*) leads to nuclei. How fine tuned is the universe?

Hoyle state (7.65 MeV excitation of ¹²C) plays essential role in triple-alpha process for stellar nucleosynthesis of carbon.

NN interaction (and *NNN*) leads to nuclei. How fine tuned is the universe?

Hoyle state (7.65 MeV excitation of 12 C) plays essential role in triple-alpha process for stellar nucleosynthesis of carbon.



(By Pamputt [CC-BY-SA-4.0], via Wikimedia Commons)

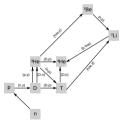
Big Bang nucleosynthesis has *deuterium bottleneck*: low deuteron binding energy 2.2 MeV delays onset of nucleosynthesis.

 \rightarrow controls abundances of light elements.

NN interaction (and NNN) leads to nuclei.

How fine tuned is the universe?

Hoyle state (7.65 MeV excitation of ¹²C) plays essential role in triple-alpha process for stellar nucleosynthesis of carbon.



(By Pamputt [CC-BY-SA-4.0], via Wikimedia Commons)

Big Bang nucleosynthesis has *deuterium bottleneck*: low deuteron binding energy 2.2 MeV delays onset of nucleosynthesis.

→ controls abundances of light elements.

How strongly does deuteron binding depend on quark masses?

Could pp or nn bind?

Nuclei as tools in experiments

In practice, nuclei instead of free nucleons are often used.

- ► Argon in neutrino experiments (MicroBooNE, DUNE).
- Xenon for dark matter direct detection (XENONnT, LUX-ZEPLIN).

Nuclei as tools in experiments

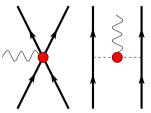
In practice, nuclei instead of free nucleons are often used.

- ► Argon in neutrino experiments (MicroBooNE, DUNE).
- Xenon for dark matter direct detection (XENONnT, LUX-ZEPLIN).

Need to understand interaction of probe with > 1 nucleon.

e.g. EMC effect:

distribution of quarks is different inside nucleus compared with proton and neutron



Nuclei as tools in experiments

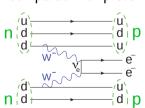
In practice, nuclei instead of free nucleons are often used.

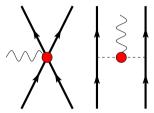
- Argon in neutrino experiments (MicroBooNE, DUNE).
- Xenon for dark matter direct detection (XENONnT, LUX-ZEPLIN).

Need to understand interaction of probe with > 1 nucleon.

e.g. EMC effect:

distribution of quarks is different inside nucleus compared with proton and neutron





Long-term challenge: neutrinoless double beta decay.

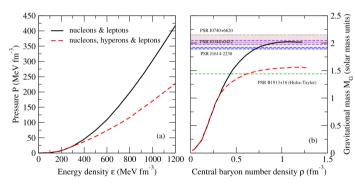
Are neutrinos Majorana?

Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (*hyperons*)? Hyperon interactions with S = -1 or -2 less well known.

Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (*hyperons*)? Hyperon interactions with S = -1 or -2 less well known.



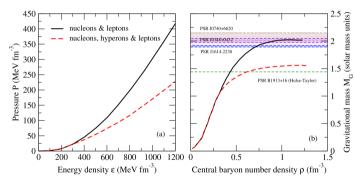
 Λ baryons can reduce Fermi pressure in neutron stars.

Contradicted by detection of neutron stars with $M \approx 2M_{\odot}$.

I. Vidaña, EPJ Web Conf. 271, 09001 (2022)

Hyperon interactions

NN interaction thoroughly studied in experiments. What about strange baryons (*hyperons*)? Hyperon interactions with S = -1 or -2 less well known.



 Λ baryons can reduce Fermi pressure in neutron stars.

Contradicted by detection of neutron stars with $M \approx 2M_{\odot}$.

I. Vidaña, EPJ Web Conf. 271, 09001 (2022)

Do hyperon-hyperon (YY) or NNY interactions play a role?

Outline

- 1. Methodology and challenges
- 2. NN: old versus new calculations
- 3. *H* dibaryon
- 4. Outlook

Methods for baryon-baryon scattering

Standard approach:

- 1. Compute the finite-volume spectra for various quantum numbers: flavour, total momentum P, little-group irrep Λ .
- 2. Use finite-volume quantization to constrain model for scattering amplitude.
- 3. Find bound-state poles, resonances, etc. in model.

Alternative approach: HAL QCD method. S. Aoki, previous talk

Methods for baryon-baryon scattering

Standard approach:

- **1.** Compute the finite-volume spectra for various quantum numbers: flavour, total momentum P, little-group irrep Λ .
- 2. Use finite-volume quantization to constrain model for scattering amplitude.
- 3. Find bound-state poles, resonances, etc. in model.

Alternative approach: HAL QCD method. S. Aoki, previous talk

In all cases:

- 4. Control standard lattice systematics.
 - ▶ Discretization effects: lattice spacing $a \rightarrow 0$.
 - Residual finite-volume effects: box size $L \to \infty$.
 - M. Hansen, F. Romero-López, A. Rusetsky, L. Meng, S. Dawid talks on Tuesday
 - Physical quark masses / chiral extrapolation.

Methods for baryon-baryon scattering

Standard approach:

- **1.** Compute the finite-volume spectra for various quantum numbers: flavour, total momentum P, little-group irrep Λ .
- 2. Use finite-volume quantization to constrain model for scattering amplitude.
- 3. Find bound-state poles, resonances, etc. in model.

Alternative approach: HAL QCD method. S. Aoki, previous talk

In all cases:

- 4. Control standard lattice systematics.
 - ightharpoonup Discretization effects: lattice spacing $a \to 0$.
 - Residual finite-volume effects: box size $L \to \infty$.
 - M. Hansen, F. Romero-López, A. Rusetsky, L. Meng, S. Dawid talks on Tuesday
 - Physical quark masses / chiral extrapolation.

Find an interpolating operator O with the desired quantum numbers. Compute the two-point function

$$C(t) = \langle O(t)O^{\dagger}(0)\rangle.$$

Find an interpolating operator *O* with the desired quantum numbers. Compute the two-point function

$$C(t) = \langle O(t)O^{\dagger}(0)\rangle.$$

Inserting a complete set of states, we get

$$C(t) = \sum_{n} e^{-E_{n}t} \left| \langle n|O^{\dagger}|\Omega \rangle \right|^{2}$$
$$\stackrel{t \to \infty}{\longrightarrow} e^{-E_{0}t} \left| \langle 0|O^{\dagger}|\Omega \rangle \right|^{2}.$$

Find an interpolating operator *O* with the desired quantum numbers.

Compute the two-point function

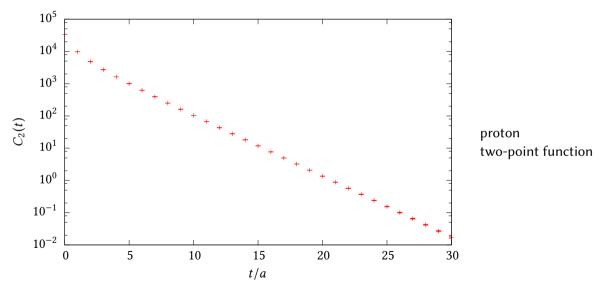
$$C(t) = \langle O(t)O^{\dagger}(0)\rangle.$$

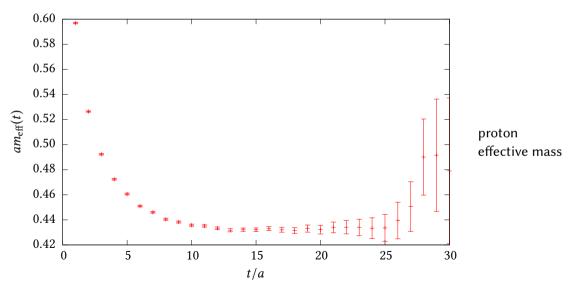
Inserting a complete set of states, we get

$$C(t) = \sum_{n} e^{-E_{n}t} \left| \langle n|O^{\dagger}|\Omega \rangle \right|^{2}$$
$$\stackrel{t \to \infty}{\longrightarrow} e^{-E_{0}t} \left| \langle 0|O^{\dagger}|\Omega \rangle \right|^{2}.$$

Then take the effective mass,

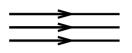
$$m_{\text{eff}}(t) = \frac{1}{\Delta} \log \frac{C(t)}{C(t+\Delta)}$$
$$\longrightarrow E_0 + O(e^{-(E_1 - E_0)t}).$$





Nucleon correlator:

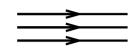
$$C_{\text{2pt}}(t) = \left\langle O(t)O^{\dagger}(0) \right\rangle \sim \left\langle \left\langle \Re\left[S(t,0)^{3}\right] \right\rangle \right\rangle$$
$$\rightarrow e^{-m_{N}t}$$



Nucleon correlator:

$$C_{2pt}(t) = \langle O(t)O^{\dagger}(0) \rangle \sim \langle \langle \Re[S(t,0)^3] \rangle \rangle$$

$$\to e^{-m_N t}$$



In general $\sigma^2(X) = \langle\!\langle X^2 \rangle\!\rangle - \langle\!\langle X \rangle\!\rangle^2$.

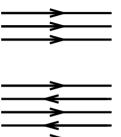
Nucleon correlator:

$$C_{\text{2pt}}(t) = \left\langle O(t)O^{\dagger}(0) \right\rangle \sim \left\langle \left\langle \Re\left[S(t,0)^{3}\right] \right\rangle \right\rangle$$

$$\to e^{-m_{N}t}$$

In general
$$\sigma^2(X) = \langle \langle X^2 \rangle \rangle - \langle \langle X \rangle \rangle^2$$
.

$$\sigma^{2}(C_{2pt}(t)) \sim \langle \langle S(t,0)^{3} S^{*}(t,0)^{3} \rangle \rangle + \cdots$$
$$\rightarrow e^{-3m_{\pi}t}$$



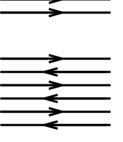
Nucleon correlator:

$$C_{2pt}(t) = \langle O(t)O^{\dagger}(0) \rangle \sim \langle \langle \Re[S(t,0)^3] \rangle \rangle$$

$$\to e^{-m_N t}$$

In general
$$\sigma^2(X) = \langle \langle X^2 \rangle \rangle - \langle \langle X \rangle \rangle^2$$
.

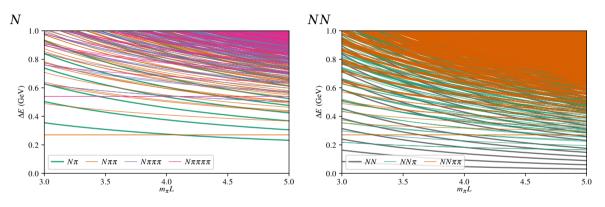
$$\sigma^{2}(C_{2pt}(t)) \sim \langle \langle S(t,0)^{3} S^{*}(t,0)^{3} \rangle \rangle + \cdots$$
$$\rightarrow e^{-3m_{\pi}t}$$



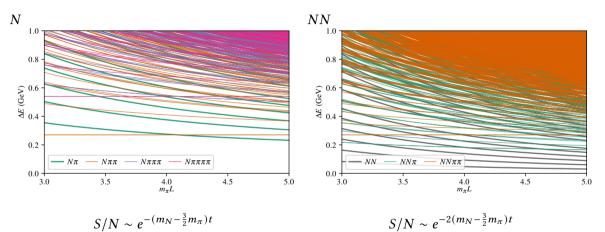
Signal-to-noise ratio:

$$S/N \equiv \frac{C_{\mathrm{2pt}}(t)}{\sigma(C_{\mathrm{2pt}}(t))} \rightarrow e^{-(m_N - \frac{3}{2}m_\pi)t}$$
 single nucleon
$$\rightarrow e^{-2(m_N - \frac{3}{2}m_\pi)t}$$
 two nucleons

Excited-state spectrum (noninteracting)



Excited-state spectrum (noninteracting)



Spectroscopy (variational method)

Given a set of N interpolating operators $\{O_i\}$, find optimal linear combination $\tilde{O}_n = v_i^{\dagger}O_i$ for isolating state n.

Spectroscopy (variational method)

Given a set of N interpolating operators $\{O_i\}$, find optimal linear combination $\tilde{O}_n = v_i^{\dagger}O_i$ for isolating state n.

Solved via generalized eigenvalue problem (GEVP),

$$C_{ij}(t) \equiv \langle O_i(t)O_j^{\dagger}(0)\rangle,$$

 $C(t + \Delta)v_n = \lambda_n C(t)v_n.$

Spectroscopy (variational method)

Given a set of N interpolating operators $\{O_i\}$, find optimal linear combination $\tilde{O}_n = v_i^{\dagger}O_i$ for isolating state n.

Solved via generalized eigenvalue problem (GEVP),

$$\mathbf{C}_{ij}(t) \equiv \langle O_i(t)O_j^{\dagger}(0)\rangle,$$

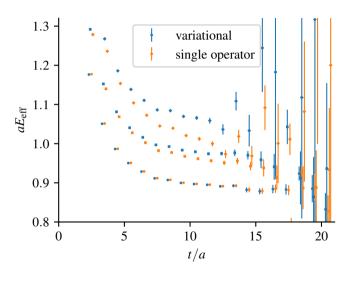
 $\mathbf{C}(t+\Delta)v_n = \lambda_n \mathbf{C}(t)v_n.$

For each of the lowest N states, this gives an effective mass and an optimized interpolating operator:

$$m_{\mathrm{eff},n} = \frac{-1}{\Lambda} \log \lambda_n, \qquad \tilde{O}_n = v_{ni}^{\dagger} O_i,$$

with faster approach to plateau $\sim e^{-(E_N - E_n)t}$.

Importance of variational method



Variational approach essential for excited states.

Single operators can also fail to obtain ground state.

Interpolating operators for dibaryon

Typically use "smeared" quark fields with Gaussian-like profile. Simplest choices:

Hexaquark

$$O_H(t, P) = \sum_{\mathbf{x}} e^{-iP \cdot \mathbf{x}} (qqqqqq)(t, \mathbf{x})$$

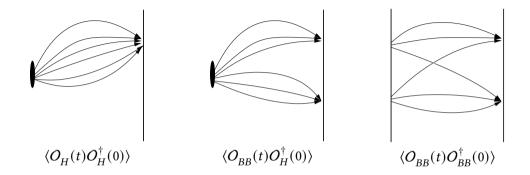
Looks like quark-model state.

Two-baryon

$$O_{BB}(t, \mathbf{P}) = \sum_{\mathbf{x}, \mathbf{y}} e^{-i\mathbf{p}_1 \cdot \mathbf{x}} e^{-i(\mathbf{P} - \mathbf{p}_1) \cdot \mathbf{y}} (qqq)(t, \mathbf{x}) (qqq)(t, \mathbf{y})$$

- ► Looks like noninteracting baryon-baryon state.
- \triangleright Varying p_1 yields many different operators with same total P.

Correlation functions

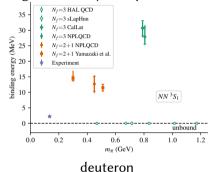


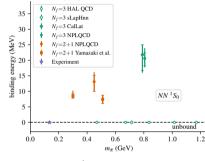
How to compute?

- $\qquad \qquad \text{Point-source propagator} \rightarrow \langle O_H^{}(t) O_H^{\dagger}(0) \rangle \text{ or } \langle O_{BB}^{}(t) O_H^{\dagger}(0) \rangle.$
- ▶ Nonlocal methods like distillation $\rightarrow \langle O_{BB}(t)O_{BB}^{\dagger}(0)\rangle$.

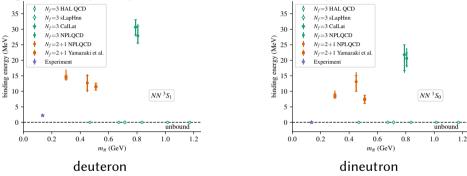
Many early calculations used only $\langle O_{RR}(t)O_H^\dagger(0)\rangle$ asymmetric correlators.

Decade-long controversy over presence of bound states at heavy quark masses.





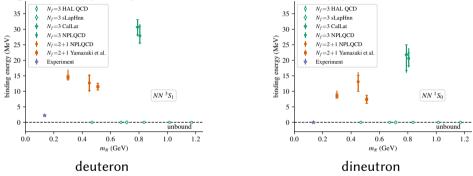
Decade-long controversy over presence of bound states at heavy quark masses.



Disagreement about simplest warm-up problem for nuclear physics on the lattice.

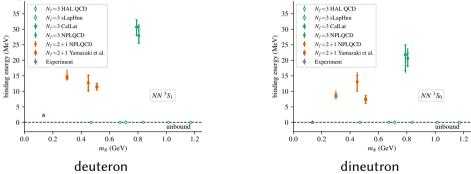
Experiment: $B_d \approx 2.2$ MeV known for 90 years. J. Chadwick and M. Goldhaber, Nature 134, 237–238 (1934)

Decade-long controversy over presence of bound states at heavy quark masses.



No calculation performed using more than one lattice spacing.

Decade-long controversy over presence of bound states at heavy quark masses.

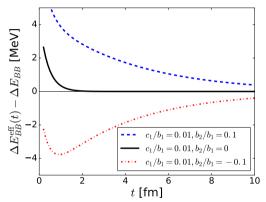


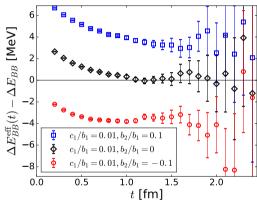
No calculation performed using more than one lattice spacing.

All calculations that obtain bound states use $\langle O_{RR}(t)O_H^{\dagger}(0)\rangle$ asymmetric correlation functions.

What can go wrong?

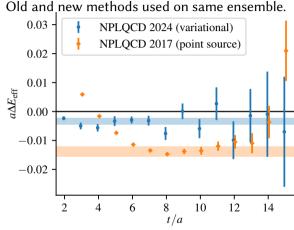
T. Iritani *et al.* (HAL QCD), Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD, JHEP **2016**, 101 (2016) [1607.06371] (CC BY 4.0)





Mock data: effective mass for correlator $C(t) = b_1 + b_2 e^{-\delta E_{\rm el} t} + c_1 e^{-\delta E_{\rm inel} t}$. "elastic" excitation $\delta E_{\rm el} = 50$ MeV "inelastic" excitation $\delta E_{\rm inel} = 500$ MeV

Point sources versus variational method with bilocal interpolators



 $m_{\pi} \approx 800$ MeV.

Old calculation:

 $^{1}S_{0}$ bound state with $B_{nn}\approx 21$ MeV.

New calculation consistent with unbound NN.

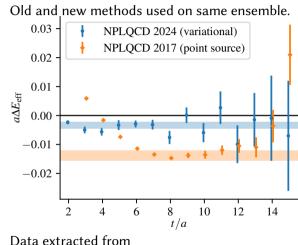
Data extracted from

W. Detmold et al. (NPLQCD), 2404.12039

M. L. Wagman et al. (NPLQCD), PRD 96, 114510 (2017)

[1706.06550]

Point sources versus variational method with bilocal interpolators



W. Detmold *et al.* (NPLQCD), 2404.12039 M. L. Wagman *et al.* (NPLQCD), PRD 96, 114510 (2017)

 $m_{\pi} \approx 800$ MeV.

Old calculation:

 ${}^{1}S_{0}$ bound state with $B_{nn} \approx 21$ MeV.

New calculation consistent with unbound NN.

Several variational baryon-baryon calculations done:

A. Francis, JRG *et al.*, PRD 99, 074505 (2019) [1805.03966] B. Hörz *et al.* (sLapHnn), PRC 103, 014003 (2021) [2009.11825]

JRG et al., PRL 127, 242003 (2021) [2103.01054]

S. Amarasinghe *et al.* (NPLQCD), PRD 107, 094508 (2023) [2108.10835]

W. Detmold *et al.* (NPLQCD), 2404.12039

Z.-Y. Wang @ Lattice 2024

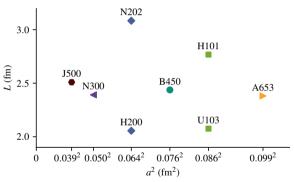
Y. Geng (CLQCD) @ Lattice 2024

Largely consistent picture:

no NN bound state at heavy m_{π} .

Calculations at light SU(3)-symmetric point

JRG, A. D. Hanlon, P. M. Junnarkar, H. Wittig: Phys. Rev. Lett. 127, 242003 (2021); PoS LATTICE 2021, 294; PoS LATTICE 2022, 200; M. Padmanath, J. Bulava, JRG, A. D. Hanlon, B. Hörz, P. Junnarkar, C. Morningstar, S. Paul, H. Wittig, PoS LATTICE 2021, 459 + ongoing work (BaSc collaboration)



Ensembles with O(a) improved Wilson-clover fermions from CLS.

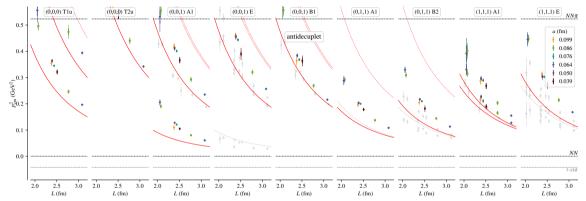
SU(3)-symmetric point with physical $m_u + m_d + m_s$.

 $m_\pi=m_K=m_\etapprox 420$ MeV.

Two octet baryons: $(8 \otimes 8)_S = 1 \oplus 8 \oplus 27$, $(8 \otimes 8)_A = 8 \oplus 10 \oplus \overline{10}$.

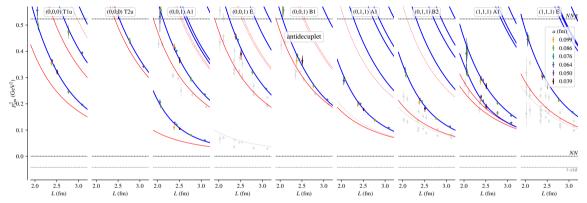
H dibaryon: 1; NN: 27, $\overline{10}$.

Antidecuplet (NN I = 0): spin 0 spectrum



Operators constructed with definite spin. Spin-1 states (gray) identified via overlaps. Quantization condition factorizes in spin. Here 1P_1 and 1F_3 are relevant. Red curves: noninteracting levels.

Antidecuplet (NNI = 0): spin 0 spectrum, example fit 1



Fit ansatz:

$$p^3 \cot \delta_{^1P_1} = c_1 + c_2 p^2$$
, $p^7 \cot \delta_{^1P_3} = c_3 + c_4 p^8$,

assuming no discretization effects.

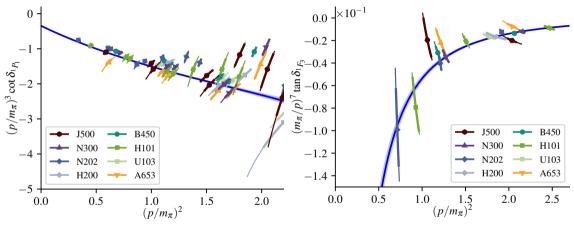
Antidecuplet (NNI = 0): spin 0 spectrum, example fit 2



Fit ansatz: solutions to Lippmann-Schwinger equation for ${}^{1}P_{1}$ and ${}^{1}F_{3}$ with one-pion-exchange potential and contact terms, $\Lambda = 1.5m_{\pi}$, assuming no discretization effects.

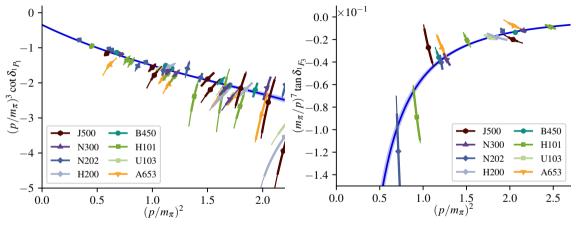
Note: spurious solutions to quantization condition near left-hand cut.

Spin 0 phase shifts: P and F waves (fit 2)



Points: energy levels under single-partial-wave approximation.

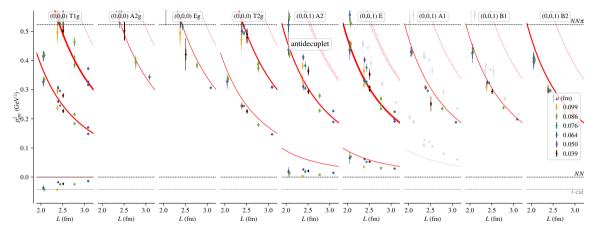
Spin 0 phase shifts: P and F waves (fit 2)



Points: energy levels taking other partial wave into account.

Data lie on single curve. Nontrivial consistency check of spectrum!

Antidecuplet (NN I = 0): spin 1 spectrum (1)

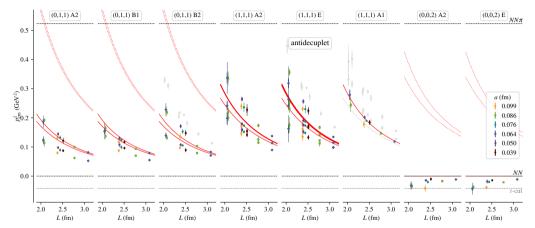


Spin-zero states shown in gray.

Thickness of red curves proportional to degeneracy of noninteracting level. (39 levels) \times (8 ensembles) = 312, although some lie above $NN\pi$ threshold.

 $^3S_1, ^3D_1, ^3D_2, ^3D_3$ are relevant. Possibly also G waves.

Antidecuplet (NN I = 0): spin 1 spectrum (2)



Spin-zero states shown in gray.

Thickness of red curves proportional to degeneracy of noninteracting level. (39 levels) \times (8 ensembles) = 312, although some lie above $NN\pi$ threshold.

 ${}^{3}S_{1}$, ${}^{3}D_{1}$, ${}^{3}D_{2}$, ${}^{3}D_{3}$ are relevant. Possibly also G waves.

Analyzing coupled 3S_1 and 3D_1

Quantization condition: $\det(\tilde{K}^{-1}-B)=0$. Briceño, Davoudi, Luu 2013; Morningstar et al. 2017 Blatt-Biedenharn parametrization including $i^{\ell-\ell'}$ due to convention mismatch:

$$\tilde{K}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix} \begin{pmatrix} \cos \epsilon_1 & \sin \epsilon_1 \\ -\sin \epsilon_1 & \cos \epsilon_1 \end{pmatrix} \begin{pmatrix} p \cot \delta_{1\alpha} & 0 \\ 0 & p \cot \delta_{1\beta} \end{pmatrix} \begin{pmatrix} \cos \epsilon_1 & -\sin \epsilon_1 \\ \sin \epsilon_1 & \cos \epsilon_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix}.$$

Analyzing coupled 3S_1 and 3D_1

Quantization condition: $\det(\tilde{K}^{-1} - B) = 0$. Briceño, Davoudi, Luu 2013; Morningstar et al. 2017 Blatt-Biedenharn parametrization including $i^{\ell-\ell'}$ due to convention mismatch:

$$\tilde{K}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix} \begin{pmatrix} \cos \epsilon_1 & \sin \epsilon_1 \\ -\sin \epsilon_1 & \cos \epsilon_1 \end{pmatrix} \begin{pmatrix} p \cot \delta_{1\alpha} & 0 \\ 0 & p \cot \delta_{1\beta} \end{pmatrix} \begin{pmatrix} \cos \epsilon_1 & -\sin \epsilon_1 \\ \sin \epsilon_1 & \cos \epsilon_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix}.$$

Start with assumption $\delta_{1\beta}=0$. Then ϵ_1 causes splitting of helicity states.

Analyzing coupled 3S_1 and 3D_1

Quantization condition: $\det(\tilde{K}^{-1} - B) = 0$. Briceño, Davoudi, Luu 2013; Morningstar et al. 2017 Blatt-Biedenharn parametrization including $i^{\ell-\ell'}$ due to convention mismatch:

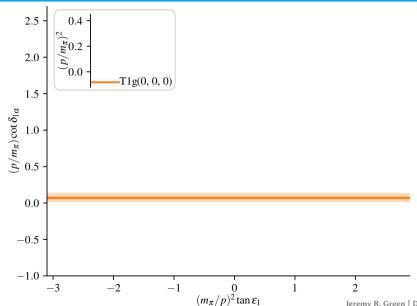
$$\tilde{K}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix} \begin{pmatrix} \cos \epsilon_1 & \sin \epsilon_1 \\ -\sin \epsilon_1 & \cos \epsilon_1 \end{pmatrix} \begin{pmatrix} p \cot \delta_{1\alpha} & 0 \\ 0 & p \cot \delta_{1\beta} \end{pmatrix} \begin{pmatrix} \cos \epsilon_1 & -\sin \epsilon_1 \\ \sin \epsilon_1 & \cos \epsilon_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p^2 \end{pmatrix}.$$

Start with assumption $\delta_{1\beta}=0$. Then ϵ_1 causes splitting of helicity states.

Each energy level imposes constraint on $(p^{-2} \tan \epsilon_1, p \cot \delta_{1\alpha})$ plane:

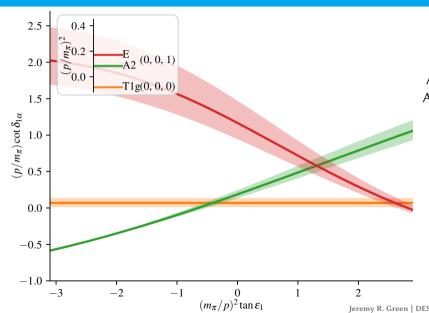
$$p \cot \delta_{1\alpha} = \frac{B_{00} - (B_{01} + B_{10})x + B_{11}x^2}{1 + p^4x^2}, \quad x = p^{-2} \tan \epsilon_1.$$

δ_{1lpha} and ϵ_1 on N202



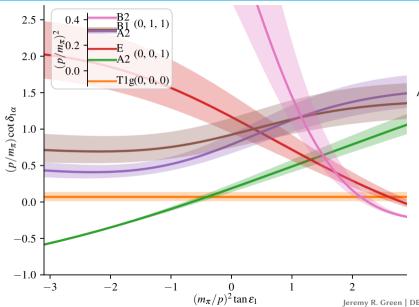
Assume $\delta_{1\beta} = 0$. Also neglect 3D_2 , 3D_3 .

δ_{1lpha} and ϵ_1 on N202



Assume $\delta_{1\beta} = 0$. Also neglect 3D_2 , 3D_3 .

$\delta_{1\alpha}$ and ϵ_1 on N202

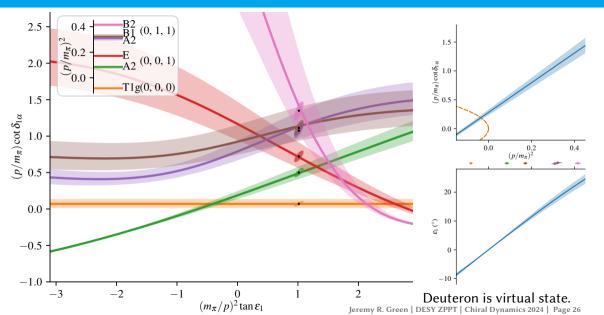


Assume $\delta_{1\beta} = 0$. Also neglect 3D_2 , 3D_3 .

$\delta_{1\alpha}$ and ϵ_1 on N202



$\delta_{1\alpha}$ and ϵ_1 on N202



Volume 38, Number 5

Perhaps a Stable Dihyperon*

R. L. Jaffet

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^{\sigma}=0^{\circ}$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H^{\bullet}) with $J^{\sigma}=1^{\circ}$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decays systematics of the H are discussed

TABLE I. Quantum numbers and masses of S-wave dibaryons.

SU(6) _{cs} representation	C_6	J	$SU(3)_{\mathrm{f}}$ representation	Mass in the limit $m_s = 0$ (MeV)
490	144	0	1	1760
896	120	1,2	8	1986
280	96	1	10	2165
175	96	1	10*	2165
189	80	0,2	27	2242
35	48	1	35	2507
1	0	0	28	2799

Proposed *uuddss* flavour-singlet dibaryon with $I^P = 0^+$.

Bound state of two Λ hyperons with $B_H \approx 80$ MeV.

H dibaryon: Experimental searches

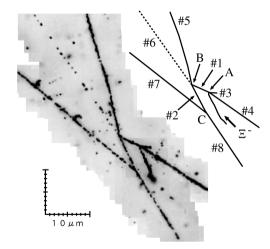


FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

Strongest constraint comes from "Nagara" event from E373 at KEK, which found a $^{~6}_{\Lambda\Lambda}{\rm He}$ double-hypernucleus with $\Lambda\Lambda$ separation energy

$$B_{\Lambda\Lambda}^{\text{Nagara}} = 6.91 \pm 0.16 \text{ MeV}.$$

Absence of strong decay $^{6}_{\Lambda\Lambda}\mathrm{He} \rightarrow {}^{4}\mathrm{He} + H$ implies

$$B_H < B_{\Lambda\Lambda}^{\text{Nagara}}$$
.

H. Takahashi et al., PRL 87, 212502 (2001)

H dibaryon: Experimental searches

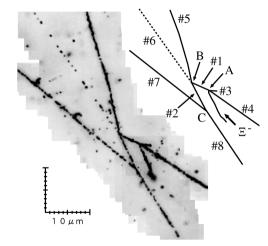


FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

Strongest constraint comes from "Nagara" event from E373 at KEK, which found a $^{~6}_{\Lambda\Lambda}{\rm He}$ double-hypernucleus with $\Lambda\Lambda$ separation energy

$$B_{\Lambda\Lambda}^{\text{Nagara}} = 6.91 \pm 0.16 \text{ MeV}.$$

Absence of strong decay ${}_{\Lambda\Lambda}^{6}{\rm He} \rightarrow {}^{4}{\rm He} + H$ implies

$$B_H < B_{\Lambda\Lambda}^{\text{Nagara}}$$
.

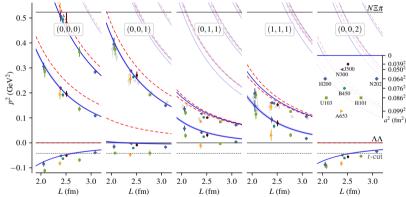
Also studied using "femtoscopy" method at LHC. ALICE, PLB **797**, 134822 (2019)

H. Takahashi et al., PRL 87, 212502 (2001)

H dibaryon: spectrum summary

Weakly bound H dibaryon from SU(3)-flavor-symmetric QCD

JRG, A. D. Hanlon, P. M. Junnarkar, H. Wittig, Phys. Rev. Lett. **127**, 242003 (2021)



SU(3) singlet.

Trivial (A1g or A1) irreps.

 p^2 is back-to-back scattering momentum: $E_{cm} = 2\sqrt{p^2 + m^2}$

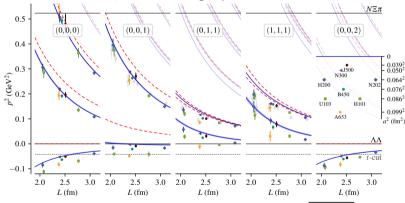
Points: lattice energy levels.

Red dashed curves: noninteracting levels.

Blue curves: interacting levels in continuum.

H dibaryon: spectrum summary

Weakly bound H dibaryon from SU(3)-flavor-symmetric QCD [RG, A. D. Hanlon, P. M. Junnarkar, H. Wittig, Phys. Rev. Lett. **127**, 242003 (2021)



SU(3) singlet.

Trivial (A1g or A1) irreps.

Strong dependence on a^2 ! Levels lie on left-hand cut!

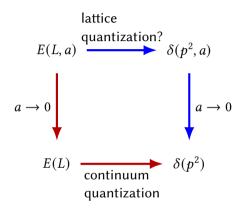
 p^2 is back-to-back scattering momentum: $E_{cm} = 2\sqrt{p^2 + m^2}$

Points: lattice energy levels.

Red dashed curves: noninteracting levels.

Blue curves: interacting levels in continuum.

Quantization condition and continuum limit

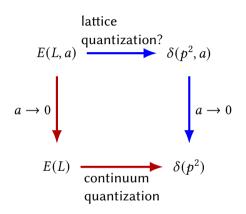


Continuum extrapolation: follow blue path, applying continuum quantization condition at nonzero lattice spacing.

Combined fits to multiple lattice spacings: let

$$p \cot \delta(p^2, a) = \sum_{i=0}^{N-1} c_i(a) p^{2i}, \quad c_i(a) = c_{i0} + c_{i1} a^2.$$

Quantization condition and continuum limit



Continuum extrapolation: follow blue path, applying continuum quantization condition at nonzero lattice spacing.

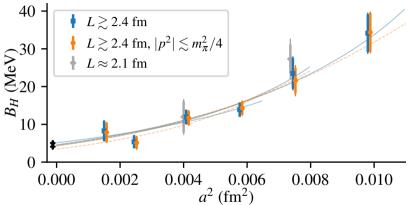
Combined fits to multiple lattice spacings: let

$$p \cot \delta(p^2, a) = \sum_{i=0}^{N-1} c_i(a) p^{2i}, \quad c_i(a) = c_{i0} + c_{i1} a^2.$$

Recent work on including discretization effects in quantization condition:

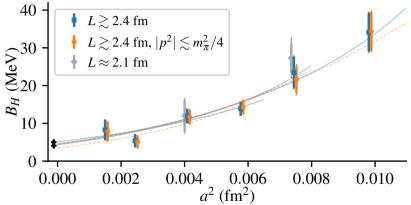
M. T. Hansen and T. Peterken, 2408.07062

H dibaryon binding energy versus lattice spacing



Fits to spectrum with different cuts on a and p^2 . Strong dependence on lattice spacing.

H dibaryon binding energy versus lattice spacing

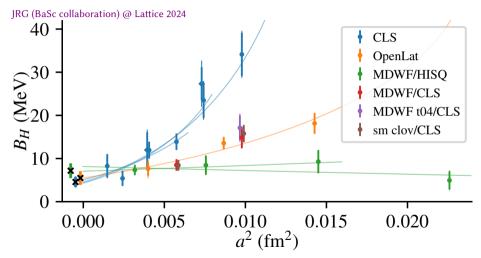


Fits to spectrum with different cuts on a and p^2 . Strong dependence on lattice spacing.

Strong dependence on a^2 also found by HAL QCD and NPLQCD at heavier pion mass.

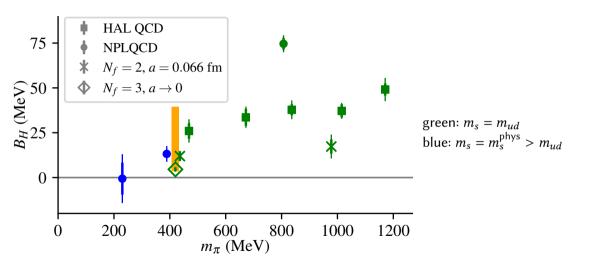
T. Inoue, Few Body Syst. **65**, 34 (2024) R. Perry @ Lattice 2024

Binding energy of H dibaryon: different lattice actions



Three independent $a \rightarrow 0$ extrapolations agree. Size of lattice artifacts varies significantly.

H dibaryon binding energy: comparison with literature



Summary and outlook

Findings:

- ▶ Variational methods are essential for obtaining correct finite-volume spectrum.
- \triangleright Contrary to earlier calculations, probably no *NN* bound state at heavy m_{π} .
- ▶ H dibaryon is bound by ~ 5 MeV at SU(3)-symmetric point.
- ▶ Discretization effects can be surprisingly important, particularly in *S* waves.

Summary and outlook

Findings:

- Variational methods are essential for obtaining correct finite-volume spectrum.
- Contrary to earlier calculations, probably no *NN* bound state at heavy m_{π} .
- ▶ H dibaryon is bound by ~ 5 MeV at SU(3)-symmetric point.
- Discretization effects can be surprisingly important, particularly in S waves.

Important next steps:

- ▶ Better understanding of lattice artifacts.
- Inclusion of left-hand cut in finite-volume quantization.
- More detailed cross-checks between collaborations and with HAL QCD.
- Lighter quark masses.

Combined phase shift fits

S-wave quantization condition:

$$p \cot \delta(p) = \frac{2}{\sqrt{\pi L \gamma}} Z_{00}^{PL/(2\pi)} \left(1, \left(\frac{pL}{2\pi} \right)^2 \right)$$

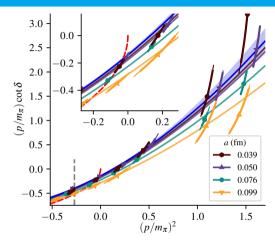
Combined phase shift fits

S-wave quantization condition:

$$p \cot \delta(p) = \frac{2}{\sqrt{\pi L \gamma}} Z_{00}^{PL/(2\pi)} \left(1, \left(\frac{pL}{2\pi} \right)^2 \right)$$

Fit ansatz:

$$p \cot \delta(p) = \sum_{i=0}^{N-1} c_i p^{2i}, \quad c_i = c_{i0} + c_{i1} a^2.$$



Combined phase shift fits

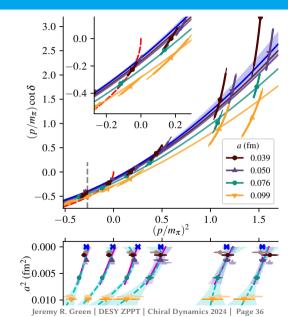
S-wave quantization condition:

$$p \cot \delta(p) = \frac{2}{\sqrt{\pi L \gamma}} Z_{00}^{PL/(2\pi)} \left(1, \left(\frac{pL}{2\pi} \right)^2 \right)$$

Fit ansatz:

$$p \cot \delta(p) = \sum_{i=0}^{N-1} c_i p^{2i}, \quad c_i = c_{i0} + c_{i1} a^2.$$

Cross check: extrapolate energies at fixed volume.



Symanzik theory: EFT describing lattice QCD at a > 0

With O(a) improved action, corrections start at a^2 :

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}} + a^2 \sum_{i} O_i + O(a^3).$$

Dimension-six operators O_i are gluonic, $\bar{q}q$, or $(\bar{q}q)^2$ satisfying symmetries of lattice action:

- ▶ Some break O(4) rotational symmetry \rightarrow modified dispersion relations.
- Some break chiral symmetry.

Logarithmic corrections also understood. N. Husung et al., 2022

Symanzik theory: EFT describing lattice QCD at a > 0

With O(a) improved action, corrections start at a^2 :

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}} + a^2 \sum_{i} O_i + O(a^3).$$

Dimension-six operators O_i are gluonic, $\bar{q}q$, or $(\bar{q}q)^2$ satisfying symmetries of lattice action:

- ▶ Some break O(4) rotational symmetry \rightarrow modified dispersion relations.
- Some break chiral symmetry.

Logarithmic corrections also understood. N. Husung et al., 2022

We see percent-level effects on baryon-baryon energies but O(100%) effects on scattering observables such as the scattering length.

Can we understand what is causing these large effects? Study using different actions.