R-Value Measurement at BESIII

Frederic Stieler for the BESIII collaboration

The 11th International Workshop on Chiral Dynamics

August 29, 2024

DFG Deutsche Forschungsgemeinschaft German Research Foundation

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Definition of R-Value

Ratio of leading-order cross section of hadron and muon pair production in e⁺e⁻ annihilation

$$R = \frac{\sigma^{0}(e^{+}e^{-} \rightarrow \text{hadrons})}{\sigma^{0}(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})} \equiv \frac{\sigma_{\text{had}}^{0}}{\sigma_{\mu\mu}^{0}} \approx N_{c} \sum_{f} Q_{f}^{2}$$

with $\sigma_{\mu\mu}^{0}$ from QED:
$$R \equiv \frac{\sigma_{\mu\mu}^{0}(s) = \frac{4\pi\alpha^{2}}{3s} \frac{\beta_{\mu}(3 - \beta_{\mu}^{2})}{2}}{\sigma_{\mu\mu}^{0}(s) = \frac{4\pi\alpha^{2}}{3s} \frac{\beta_{\mu}(3 - \beta_{\mu}^{2})}{2}}$$

➔ Important input to current tests of the Standard Model

Running of the Fine Structure Constant: $\Delta \alpha_{em}$

 $\alpha(m_Z^2)$ one of three essential observables for electroweak precision physics Precision test for the SM & essential for electroweak precision physics!

Hadronic Vacuum Polarisation Contribution

August 29-2024

Running of the Fine Structure Constant: $\Delta \alpha_{em}$

Using the dispersive approach for the hadronic contribution

$$\Delta \alpha_{\text{had}}^{(5)}(s) = -\frac{\alpha s}{3\pi} \int_{s_{th}}^{\infty} ds' \frac{\mathbf{R}(s')}{s'(s'-s-i\epsilon)}$$

Source	Contribution ($\times 10^{-4}$)
$\Delta \alpha_{ m lepton}(M_Z^2)$	314.979 ± 0.002
$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)$	276.0 ± 1.0
$\Delta \alpha_{ m top}(M_Z^2)$	-0.7180 ± 0.0054

Eur. Phys. J. 80 (2020) 241

The R-Value is an important input over a wide energy range!

August 29. 2024

Anomalous Magnetic Moment of the Muon

• Muon anomaly

 $\alpha_{\mu} = \frac{g_{\mu} - 2}{2}$

- Accuracy of 0.2 ppm in experiment and better than 0.5 ppm in theory
- Discrepancy between SM prediction and experiment
- Tensions with latest Lattice QCD calculations and cross section measurements

Auaust 29. 2024

https://twitter.com/Fermilab/status/1689665702582427648

Anomalous Magnetic Moment of the Muon

$$\alpha_{\mu}^{SM} = \alpha_{\mu}^{QED} + \alpha_{\mu}^{weak} + \alpha_{\mu}^{had}$$

Hadronic contributions dominate by far the uncertainty of α_{μ}^{SM}

Hadronic Vacuum Polarisation (HVP) using dispersive approach:

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \, \frac{\mathbf{R}(s)K(s)}{s^2}$$

R-Value needed as experimental input

August 29, 2024

IGU

Beijing Electron-Positron Collider II (BEPCII)

- Energy range: **2.0 GeV** $\leq \sqrt{s} < 5.0$ GeV
- Design luminosity exceeded by 10 % •

August 29, 2024

World's largest τ -charm data set in e^+e^- annihilation!

Highlights of BESIII:

- 10^{10} J/ ψ events 20 fb⁻¹ ψ (3770)
- $2.7 \cdot 10^9 \psi(2S)$ events

This work:

- 14 data points ($\sim 110 \text{ pb}^{-1}$)
- 2.23 GeV 3.67 GeV

Beijing Spectrometer – BESIII

August 29, 2024

JGU

Beijing Spectrometer – BESIII

August 29, 2024

JGU

Determination of R-Value

IGU

like e

R Measurement at BESIII

iii a

R Measurement at BESIII

August 29, 2024

iii a

白い 白白日

LUARLW: Nominal Model for Signal Simulation

- Self consistent inclusive generator
- Developed from **JETSET** for low energies
- Kinematics of initial hadrons determined from Lund Area Law [arXiv:hep-ph/9910285]
- Generation of resonant and continuum states
- **ISR** implemented from $2m_{\pi}$ to \sqrt{s}

August 29, 2024

- Phenomenological parameters tuned to data
- Used in most previous R-value measurements

IGU

Alternative Model: "Hybrid Generator"

- New event generator with as much experimental information as possible
- Combination of three established event generators:
 - **Phokhara**: 10 exclusive channels, hadronic models tuned to experiment
 - **ConExc**: More than 50 channels with cross sections from experiment
 - **LUARLW**: remaining unknown processes

August 29. 2024

Comparison of LUARLW and Hybrid Generator

- Effective energy spectrum of simulated ISR events
- Consistent spectra from two different generators (different ISR schemes)

Comparison of LUARLW and Hybrid Generator

LUARLW

- N_{prg}: Number of good charged tracks (prong)
- N^{2prg}: Number of isolated cluster in 2-prong events

 $\cos(\theta)$, *E* , *p*: Polar angle, EMC deposited energy, and measured momentum in MDC

Good agreement of both

generator models and

data!

Results of R-Value Measurements

- Accuracy better than **2.6** % for $\sqrt{s} < J/\psi$ and better than **3** % above
- Exceeding pQCD prediction by 2.7 σ between 3.4 and 3.6 GeV

Further R-Value Measurements at BESIII

This work:

- 14 data points
- 2.23 to 3.67 GeV
- ~110 pb⁻¹

For future analyses:

- 21 data points
- 2.00 to 3.08 GeV
- $\sim 550 \text{ pb}^{-1}$

- 104 data points
- 3.85 to 4.59 GeV
- $\sim 800 \text{ pb}^{-1}$

- Large amounts of **additional data available**
 - →139 energy scan points with > 10^5 hadrons each
- High accuracy R-value measurements in continuum and open-charm region

August 29. 2024

Alternative Approaches to R-Value Measurement

- **Exclusive** measurements for \sqrt{s} < 2 GeV
- **Inclusive** measurements for $\sqrt{s} > 2$ GeV
- Tensions in transition region

August 29. 2024

- Use ISR technique
- Exploit large charmonium data sets at BESIII
- Better detection efficiency due to ISR kinematics
- Comparison of inclusive & exclusive measurements

Summary & Outlook

- High accuracy determination of R-Value important for Standard Model tests
 - Running of $\Delta \alpha_{\rm em}(M_Z^2)$
 - Muon anomaly α_{μ}
- Pilot R-Value measurement at BESIII published in 2022
 - 2.2324 GeV $\leq \sqrt{s} \leq$ 3.6710 GeV
 - Accuracy better than

August 29, 2024

- 2.6 % below 3.1 GeV
- 3 % in the region above
- Additional high statistics data samples available
- Alternative approach exploiting ISR being developed at BESIII

(Phys. Rev. Lett. 128 (2022) 062004)

Summary & Outlook

- High accuracy determination of R-Value important for Standard Model tests
 - Running of $\Delta \alpha_{\rm em}(M_Z^2)$
 - Muon anomaly α_{μ}
- Pilot R-Value measurement at BESIII published in 2022
 - 2.2324 GeV $\leq \sqrt{s} \leq$ 3.6710 GeV
 - Accuracy better than

August 29, 2024

- 2.6 % below 3.1 GeV
- 3 % in the region above
- Additional high statistics data samples available
- Alternative approach exploiting ISR being developed at BESIII

(Phys. Rev. Lett. 128 (2022) 062004)

Thank you for your attention!

Appendix

August 29, 2024

file a

R Measurement at BESIII

10 · · · · · · ·

JGU

- Identify $e^+e^- \rightarrow e^+e^- \& e^+e^- \rightarrow \gamma\gamma$
- Reject them by:
 - \geq 2 showers in EMC
 - $|\Delta \theta| = |\theta_1 + \theta_2 180^\circ| < 10^\circ$
 - Energy deposition of secondmost energetic shower of event > 0.65 *E* beam

Good charged hadronic tracks (prongs)

- $V_Z < 5 \text{ cm } \& V_r < 0.5 \text{ cm } \& |\cos \theta| < 0.93$
- $\chi_p = (dE/dx dE/dx_p)/\sigma_p < 10$
- p < 0.94pbeam

August 29, 2024

- Remove when $E/(pc) > 0.8 \& p > 0.65p_{beam}$
- Remove when for both tracks E/(pc) > 0.8 &inv. mass < 0.1 GeV/c² & opening angle < 15°

Isolated photon candidates

- Deposited energy of shower > 0.1 GeV
- Angle between shower and nearest track > 20°
- EMC timing: $0 \le T \le 700$ ns

Anomalous Magnetic Moment of the Muon

Muon anomaly
$$\alpha_{\mu} = \frac{g_{\mu}}{2}$$

August 29. 2024

$$\alpha_{\mu} = \frac{g_{\mu} - 2}{2}$$

- Accuracy of 0.2 ppm in experiment and better than 0.5 ppm in theory
- Discrepancy between SM prediction and experiment
- Tensions with latest Lattice QCD calculations and • cross section measurements

arXiv: 2407.10913

IGU