

Structure of the $\Lambda(1405)$ from Photoproduction at GLUE

With Nilanga Wickramaarachchi (Catholic Univ.) & Reinhard Schumacher (Carnegie Mellon Univ.) & Peter Hurck (Univ. Glasgow) & Greg Kalicy (Catholic Univ.) & other GlueX Collaborators

26-Aug-24 Chiral Dynamics 2024, Bochum, Germany

- Place of the $\Lambda(1405)$ in the world
- GlueX measurement for two final states
- K-matrix fits with one or two A(1405) resonances & two scattering states
- 2-Pole nature and branching fractions of both resonances

- What is the place of the $\Lambda(1405)$ in baryonic physics?
 - It's too light, compared to $\Lambda(1520)$, in the quark model.
 - Close to the $N\overline{K}$ mass threshold molecular/penta aspect.
 - Decays to $\Sigma\pi$, but MUST also decay to $N\overline{K}$.
- Chiral unitary models, CPT, LQCD (& others) predict two I=0 states in $\Lambda(1405)$ mass range.
- GlueX has the best data set, generating it cleanly in photoproduction: $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \{\Sigma^0 \pi^0\}$ $\rightarrow K^+ \{p, K^-\} (> N\overline{k} \text{ thresholds})$

 $\rightarrow K^+ \{p \ K^-\}$ (> $N\overline{K}$ threshold)

Pole Positions from the Literature

- Higher pole ~1430 MeV couples more strongly to $N\overline{K}$, lower pole ~1390 MeV couples more to $\Sigma\pi$
- Many theorists believe: $N\overline{K}$ quasi-bound state submerged in $\Sigma\pi$ continuum: coupled-channel dynamics
- Most data from low-energy *NK* scattering, kaonic atoms not very sensitive to $\Sigma \pi$ pole position

GlueX approach is new and different

J. Ritman - ChDyn2024, 26-Aug-24

GIVE System at JLab

The GlueX Beamline and Detector NIM A 987, 164807 (2021)

J. Ritman - ChDyn2024, 26-Aug-24

GlueX Competitive Advantages:

 GlueX has world's best data set making Λ(1405) cleanly in photoproduction: γ p→ K⁺ Λ(1405)

 \rightarrow K⁺ { Σ^0 π^0 } (pure I = 0, no I = 1 contamination)

$$\rightarrow \mathsf{K}^+ \{\{\gamma \Lambda\} \pi^0\} \rightarrow \mathsf{K}^+ \gamma p \pi^- \gamma \gamma$$

• GlueX also has: $\gamma p \rightarrow K^+ \Lambda(1405)$

 $\rightarrow K^+ \{p \ K^-\}$ (when above $N\overline{K}$ threshold)

6

- Do K-matrix fit to both final states together
 - Never done before...

$\Sigma^0 \pi^0$ channel

- Exclusive kinematic fit to beam photon & final state {K⁺ γ p π⁻ γ γ} particles
- Constrain Λ and π⁰ masses, but not Σ⁰ mass, in each Σ⁰π⁰ mass bin
- Background removal fit under Σ⁰ in each Σ⁰π⁰ mass bin
- Use common GlueX acceptance & photon flux normalizations

Experimental Method II

- Clean detection of $\Lambda(1405)$ & $\Lambda(1520)$
- Evident pK⁻ threshold effect
- Smooth acceptance

- pK⁻ channel
 - $\Lambda(1520)$ sits on top of $\Lambda(1405)$ tails
 - Good, smooth acceptance

J. Ritman - ChDyn2024, 26-Aug-24

[•] $\Sigma^0 \pi^0$ channel

Cross Sections Differential in Mass

 $\sim \pi$ • $N\overline{K}$ threshold break visible

- Average mass resolution ~7.8 MeV
- Scaled by PDG branching and isospin factors of Λ(1520) to "match" Σ⁰ π⁰ scale
- N.B.: <u>instant</u> turn-on at NK threshold
- Average mass resolution ~2.0 MeV

■ 0.00 < t < 1.50 GeV²

Thresholds: $\Sigma^0 \pi^0$ 1327.62 MeV *p* K⁻ 1431.95 MeV

9

Application of K-Matrix Method*

- We have two resonances, $\Lambda(1405)_A$ and $\Lambda(1405)_B$, each coupled to $\Sigma^0 \pi^0$ and p K⁻. The $\Lambda(1520)$ also decays to the same final states.
- Assume $J = \frac{1}{2}$ L=0 states do not interfere with J=3/2 L=2 state
- Ignore the possibility of $\eta\Lambda$ and KE decays
- Poles "A" & "B" are below threshold for pK⁻ channel
- Define "branching ratio" & "branching fractions" in terms of fitted $\Sigma \pi$ and $N\overline{K}$ final states

2-Pole K-matrix Fit to $\Lambda(1405)A,B$

[•] $\Sigma^0 \pi^0$ channel

- Solid fit to data
- Dashed each A,B resonance separately
- Dotted fit to data:
 - full K-matrix fit with coherent $\Lambda(1405)A,B$ states
 - prior to convolving 7.8 MeV GlueX mass resolution

pK⁻ channel

- Solid fit to data:
 - 2.0 MeV GlueX mass resolution
- Dashed coherent tail of $\Lambda(1405)A$,B states
- Dotted incoherent high-mass background
 - 3rd order polynomial
- 0.00< t < 1.50 GeV² (full range)
- $\Lambda(1520)$ cross section agreement < 5%

J. Ritman - ChDyn2024, 26-Aug-24

1-Pole K-matrix Fit to $\Lambda(1405)B$

[•] $\Sigma^0 \pi^0$ channel

- Solid fit to data
- Dashed single $\Lambda(1405)$ resonance

pK⁻ channel

- Solid fit to data
- Dashed pK⁻ tail of $\Lambda(1405)$ state
- Dotted incoherent high-mass background
 - 3rd order polynomial
- 0.00< t < 1.50 GeV² (full range)
- Poorer fit than 2-pole ansatz: especially in critical threshold region

J. Ritman - ChDyn2024, 26-Aug-24

γ Λ(1520) Pole Position Compared to PDG

$\Lambda(1520)$ POLE POSITION

REAL PART $1517 ext{ to } 1518 \ (pprox 1517.5) ext{ MeV}$

 $-2 \times \text{IMAGINARY PART}$ 14 to 18 (\approx 16) MeV ($\rightarrow \sim 2 \times 8 \text{ MeV}$)

GlueX (preliminary):

 $(1516.5 \pm 0.3) - i (8.3 \pm 0.1)$ MeV (stat errors only) Good agreement with PDG:

suggests the GlueX method is sound

Check Unitarity of the Amplitudes

- Argand diagram and squared-magnitude for the $\Sigma^0 \pi^0$ amplitude (red)
 - Two $\Lambda(1405)$ resonances with $\Sigma^0 \pi^0$ and pK⁻ initial/final states.
 - Each amplitude stays properly bounded.
- Separately, Λ(1520) is a single pK- amplitude (blue)

Systematic Tests (work in progress)

- Branching **Fractions**
 - Nominal
 - Shifted bins
 - Tight KINFIT
 - Loose KINFIT
 - t-bin 1
 - t-bin 2
 - t-bin 3
 - Resum t-bins
 - Rescale Λ(1520) cross section

- Project each resonance separately onto the real axis
- Integrate $\Sigma^0 \pi^0$ & pK⁻ modes across full mass range: σ_{ij}
- Define branching ratio as $\sigma_{\Sigma 0 \pi 0}$ / σ_{pK-} , etc.

Hyperon	$egin{array}{c} { m BR}ig({NK\over\Sigma\pi}ig)\ ({ m value}) \end{array}$	(stat)	(syst)	$\begin{array}{ c c } & \mathrm{BF}\left(\frac{\Sigma\pi}{Total}\right) \\ & (\mathrm{value}) \end{array}$	(stat)	(syst)	$ \begin{array}{ c } \mathrm{BF}\left(\frac{NK}{Total}\right) \\ (\mathrm{value}) \end{array} $	(stat)	(syst)
$\Lambda(1405)$ [A] $\Lambda(1405)$ [B]	0.65 0.16	0.02 0.01	T.B.D.	0.606 0.859	0.009 0.005	T.B.D.	0.394 0.141	0.009 0.005	T.B.D.

- First measurement of the $\Lambda(1405)$ decaying into two separate channels: $\Sigma^0 \pi^0$ & pK⁻
- K-matrix fit to two intermediate resonances: A & B
- Two-pole ansatz is superior to single-pole ansatz
- Branching ratio/fractions defined and presented
- To do: systematics to be finalized

GlueX acknowledges the support of several funding agencies and computing facilities (http://gluex.org/thanks)

