

Weak nonleptonic hyperon decays in relativistic χ PT

N. Salone¹ S. Leupold² F. Alvarado³

¹National Centre for Nuclear Research - NCBJ

²Uppsala U.

³Valencia U., IFIC

11th International Workshop on Chiral Dynamics @ RUB

27 August 2024

UPPSALA UNIVERSITET

Nonleptonic decays

Transition amplitude

$$\mathcal{M}(B_i \to B_f \pi) = G_F m_{\pi^+}^2 \bar{u}_f \left(A^{(S)} + A^{(P)} \gamma_5 \right) u_i$$

Dimensionless *l*-wave amplitudes

parity-violating:
$$A^{(S)} \equiv S$$

parity-conserving: $A^{(P)} \equiv \frac{|\vec{\mathbf{p}}_f|}{E_f + m_f} P$

Decay observables

$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2} \qquad \beta = \frac{2\Im(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin\phi$$
$$\Gamma = \operatorname{kin}(|\vec{\mathbf{p}}_f|, E_f, m_f)(|S|^2 + |P|^2)$$

Motivation: new data landscape

nature physics https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15, 631 (2019)]

Article Open Access Published: 01 June 2022

Probing CP symmetry and weak phases with entang double-strange baryons

The BESIII Collaboration

Nature 606, 64-69 (2022) Cite this article 11k Accesses | 7 Citations | 96 Altmetric | Metrics

[Nature 606, 6469 (2022)]

with Entangled $\Lambda - \overline{\Lambda}$ Pairs

M. Ablikim et al. (BESIII Collaboration) Phys. Rev. Lett. 129 131801 - Published 22 September 2022

[PRL 129, 131801 (2022)]

Subject of study

$$\begin{split} \sqrt{2}A(\Sigma^+ \to p\pi^0) - A(\Sigma^+ \to n\pi^+) + A(\Sigma^- \to n\pi^-) &= 0\\ A(\Lambda \to p\pi^-) + \sqrt{2}A(\Lambda \to n\pi^0) &= 0\\ A(\Xi^- \to \Lambda\pi^-) + \sqrt{2}A(\Xi^0 \to \Lambda\pi^0) &= 0 \end{split}$$

Extrapolate data points

Next step

Use α , ϕ , Γ data to extrapolate updated experimental *L*-wave amplitude values.

L-wave amplitude extraction: assuming *CP* conservation, $\Delta I = 1/2$

$$L = \sum_{j} L_{j} \exp(i\delta_{j}^{L}), \ j \in \{2\Delta I, 2I\}$$

and final-interaction phase shifts [PRD105, 116022 (2022)]

	q [MeV/c]	δ_1^S [°]	δ_3^S [°]	δ^P_1 [°]	δ^P_3 [°]
$\Lambda \to N\pi$	103	6.52(9)	-4.60(7)	-0.79(8)	-0.75(4)
$\Sigma \to N\pi$	190	9.98(23)	-10.70(13)	-0.04(33)	-3.27(15)

Relative sign between amplitudes fixed by Lee-Sugawara relation

$$\frac{3}{\sqrt{6}}A^{(S)}(\Sigma^- \to n\pi^-) + A^{(S)}(\Lambda \to p\pi^-) + 2A^{(S)}(\Xi^- \to \Lambda\pi^-) = 0$$

Extrapolate data points

Next step

Use α , ϕ , Γ data to extrapolate updated experimental *L*-wave amplitude values.

New reference values extracted from current data compared to [NPB 375 (1992) 561-581]:

Previous values extracted on the assumption of real-valued amplitudes: updated to complex-valued *l*-waves on most recent data.

NI CIL	ALCIDI
N Salone	
IT. Datone	

Framework

- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χPT: EFT with hadrons as DF parametrizes meson-baryon interactions [Physica A 96 (1979) 1-2, 327-340], [Annals Phys. 158 (1984) 142].

Weak nonleptonic hyperon decays previously studied in

Nuclear Physics B261 (1985) 185-198 © North-Holland Publishing Company

ON THE VALIDITY OF CHIRAL PERTURBATION THEORY FOR WEAK HYPERON DECAYS*

J BIJNENS¹, H SONODA and Mark B WISE²

California Institute of Technology, Pasadena, CA 91125, USA

Received 23 January 1985 (Revised 14 June 1985)

Framework

- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χPT: EFT with hadrons as DF parametrizes meson-baryon interactions [Physica A 96 (1979) 1-2, 327-340], [Annals Phys. 158 (1984) 142].

Weak nonleptonic hyperon decays previously studied in

Framework

- At low-energy regime, α_s too large for a perturbative description of hadron interactions from QCD.
- χPT: EFT with hadrons as DF parametrizes meson-baryon interactions [Physica A 96 (1979) 1-2, 327-340], [Annals Phys. 158 (1984) 142].

Weak nonleptonic hyperon decays previously studied in

Starting point

Computing 1-loop corrections using *Heavy-Baryon* χ PT (nonrelativistic approach):

- Bijnens, Sonoda & Wise [NPB 261 (1985) 185-198]:
 - ▶ baryon decuplet fields not included; terms up to $O(M_K^2 \log M_K)$.
- Jenkins [NPB 375 (1992) 561-581]:
 - inclusion of decuplet, 3-meson vertex h_{π} ; terms up to $O(M_K^2 \log M_K)$.
- Borasoy & Holstein [EPJC 6 (1999) 85-107]
 - decuplet not included, 3-meson vertex h_{π} ; terms up to $M_K^2(a + b \log M_K)$.
- Abd El-Hady & Tandean [PRD 61, 114014 (2000)]:
 - same conclusions as 2, contradicting results in h_{π} terms.

Starting point

Computing 1-loop corrections using *Heavy-Baryon* χ PT (nonrelativistic approach):

- Bijnens, Sonoda & Wise [NPB 261 (1985) 185-198]:
 - ▶ baryon decuplet fields not included; terms up to $O(M_K^2 \log M_K)$.
- Inkins [NPB 375 (1992) 561-581]:
 - inclusion of decuplet, 3-meson vertex h_{π} ; terms up to $O(M_K^2 \log M_K)$.
- Borasoy & Holstein [EPJC 6 (1999) 85-107]
 - decuplet not included, 3-meson vertex h_{π} ; terms up to $M_K^2(a + b \log M_K)$.
- Abd El-Hady & Tandean [PRD 61, 114014 (2000)]:
 - same conclusions as 2, contradicting results in h_{π} terms.

General conclusions

- LO chiral corrections to S-waves are in good agreement with experiment.
- Conversely, *P*-waves are not well-described.
- Results from simultaneous fitting are presumed unsatisfactory: yet unexplored.

Relativistic χ PT and EOMS

- Dimensional regularization + modified minimal subtraction do not work for baryons;
- inclusion of baryon masses breaks power-counting for the loop diagrams.

Previous approach: HB χ PT Jenkins & Manohar [PLB 255 (1991) 558-562]

- Expansion of the Lagrangian in powers of $1/m_B$ in the chiral limit.
- Power-counting is manifest, but Lorentz invariance is not.
- Issues with analyticity (reproducing the correct positions of poles).

Extended On-Mass-Shell ren. scheme Gegelia & Japaridze [PRD 60 (1999) 114038]

- Subtract the power-counting-violating terms, i.e. choosing appropriate renormalization conditions.
- Manifest Lorentz invariance: the standard approach for $B\chi PT$ nowadays.

Procedure

Compute 1-loop corrections from relativistic LO Lagrangian

$$\mathcal{L}_{\phi B}^{\mathrm{s}} + \mathcal{L}_{\phi B}^{\mathrm{w}}$$

 $\mathcal{L}_{\phi B}^{w} = h_{D} \operatorname{tr} \bar{B} \{ \xi^{\dagger} h \xi, B \} + h_{F} \operatorname{tr} \bar{B} [\xi^{\dagger} h \xi, B] + h_{C} \operatorname{tr} \bar{T}^{\mu} (\xi^{\dagger} h \xi) T_{\mu}$

E.g. S-wave contributions:

Procedure

Inclusion of lower-lying $\frac{1}{2}^{\pm}$ resonances [PRD 59, 094025 (1999)]

 $\mathcal{L}_{\mathrm{res}}^{\mathrm{w}} \propto d^{*} \left[\mathrm{tr}(\bar{R}^{+} \{\xi^{\dagger}h\xi, B\}) + \mathrm{tr}(\bar{B}\{\xi^{\dagger}h\xi, R^{+}\}) \right] + f^{*} \left[\mathrm{tr}(\bar{R}^{+} [\xi^{\dagger}h\xi, B]) + \mathrm{tr}(\bar{B}[\xi^{\dagger}h\xi, R^{+}]) \right]$ $+ iw_{d} \left[\mathrm{tr}(\bar{R}^{-} \{\xi^{\dagger}h\xi, B\}) - \mathrm{tr}(\bar{B}\{\xi^{\dagger}h\xi, R^{-}\}) \right] + iw_{f} \left[\mathrm{tr}(\bar{R}^{-} [\xi^{\dagger}h\xi, B]) - \mathrm{tr}(\bar{B}[\xi^{\dagger}h\xi, R^{-}]) \right]$

The resulting amplitudes:

$$S_{\text{theory}}, P_{\text{theory}} = l.c.(h_{D,F,C}, w_{d,f}, d^*, f^*)$$

Goal

To fit L_{theory} to L_{expt} using least squares method to obtain LEC's values.

Preliminary results - S-waves

LECs extracted from fit to *S*-waves only:

LEC
$$[G_F m_{\pi}^2 \sqrt{2} f_{\pi}]$$

 h_D -1/3 h_F
 h_F -0.233 ± 0.007
 h_C 1.99 ± 0.04
 w_f 4.63 ± 0.07
 w_d -14.72 ± 0.11

EOMS + resonances

• Good agreement with experiment.

Preliminary results - S-waves

LECs extracted from fit to *S*-waves only:

LEC $[G_F m_{\pi}^2 \sqrt{2} f_{\pi}]$ h_D -1/3 h_F h_F -0.233 ± 0.007 h_C 1.99 ± 0.04 w_f 4.63 ± 0.07 w_d -14.72 ± 0.11

EOMS + resonances

- Good agreement with experiment.
- Corrections to LO χ PT are large.

Preliminary results - S-waves

LECs extracted from fit to *S*-waves only:

LEC $[G_F m_\pi^2 \sqrt{2} f_\pi]$ h_D -1/3 h_F h_F -0.233 ± 0.007 h_C 1.99 ± 0.04 w_f 4.63 ± 0.07 w_d -14.72 ± 0.11

EOMS + resonances

- Good agreement with experiment.
- Corrections to LO χ PT are large.
- The importance of resonances is confirmed.

Preliminary results - P-waves

LECs extracted from fit to *P*-waves only:

LEC
$$[G_F m_\pi^2 \sqrt{2} f_\pi]$$

 h_D $-1/3h_F$
 h_F 0.221 ± 0.002
 h_C 0.095 ± 0.003
 d^* 1.61 ± 0.04
 f^* -3.955 ± 0.034

EOMS + resonances

• Agreement with experiment better than in *S*-waves.

Preliminary results - P-waves

LECs extracted from fit to *P*-waves only:

LEC
$$[G_F m_\pi^2 \sqrt{2} f_\pi]$$

 h_D $-1/3h_F$
 h_F 0.221 ± 0.002
 h_C 0.095 ± 0.003
 d^* 1.61 ± 0.04
 f^* -3.955 ± 0.034

EOMS + resonances

- Agreement with experiment better than in *S*-waves.
- Similar relative size of resonance terms to tree-level.

Preliminary results - Combining *S* and *P* LECs extracted from fit to **combined** *S*- and *P*-waves:

LEC $[G_F m_\pi^2 \sqrt{2} f_\pi]$

 0.186 ± 0.002

 -0.136 ± 0.008

 h_D

 h_F

 h_C

-0.192 ± 0.004	EOMS + resonance
0 10 6 0 0 0	

• LEC's size somewhat consistent with other results.

Vd	-9.73 ± 0.06
Vf	7.71 ± 0.02
d^*	2.72 ± 0.05
f^*	-2.83 ± 0.04

Preliminary results - Combining S and P

LECs extracted from fit to combined S- and P-waves:

LEC $[G_F m_\pi^2 \sqrt{2} f_\pi]$

h_D	-0.192 ± 0.004
h_F	0.186 ± 0.002
h_C	-0.136 ± 0.008
W_d	-9.73 ± 0.06
W_f	7.71 ± 0.02
d^*	2.72 ± 0.05
f^*	-2.83 ± 0.04

EOMS + resonances

- LEC's size somewhat consistent with other results.
- Resonances dominate almost always over "true" loops.

Preliminary results - Combining S and P

LECs extracted from fit to combined S- and P-waves:

EOMS + resonances

- LEC's size somewhat consistent with other results.
- Resonances dominate almost always over "true" loops.
- *S* agreement with experiment slightly worse, *P* remains good.

 -0.192 ± 0.004

 0.186 ± 0.002

 -0.136 ± 0.008

 -9.73 ± 0.06

 7.71 ± 0.02

 2.72 ± 0.05

 -2.83 ± 0.04

 h_D

 h_F

hc

Wa

 W_f

 d^*

 f^*

LECs results

Summary

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of Λ decay asymmetry from BESIII.
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).
- Included resonance saturation terms at tree-level; they are the most relevant.
- Simultaneous fit to *S* and *P*-waves is performed: good agreement with experiment, loss of convergent behavior.
- Outlook: two-loops, $\Lambda(1405)$ as hadron molecule state...

Summary

- Hyperon nonleptonic decays were never studied in relativistic χ PT: following previous attempts in HB χ PT and updated measurement of Λ decay asymmetry from BESIII.
- Established a limit to $HB\chi PT$ from the full relativistic amplitude and resolved conflict between previous works (three-meson vertex terms, eventually neglected).
- Included resonance saturation terms at tree-level; they are the most relevant.
- Simultaneous fit to *S* and *P*-waves is performed: good agreement with experiment, loss of convergent behavior.
- Outlook: two-loops, $\Lambda(1405)$ as hadron molecule state...

Thank you!

Relativistic chiral LO Lagrangian

Meson-baryon LO Lagrangian

$$\mathcal{L}_{\phi B}^{s} = i \operatorname{tr} \bar{B} \mathcal{D} B - m_{B} \operatorname{tr} \bar{B} B + D \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_{5} \{A_{\mu}, B\} + F \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_{5} [A_{\mu}, B] - i \bar{T}^{\mu} \mathcal{D} T_{\mu}$$
$$+ m_{T} \bar{T}^{\mu} T_{\mu} + C \left(\bar{T}^{\mu} A_{\mu} B + \bar{B} A_{\mu} T^{\mu} \right) + \mathcal{H} \bar{T}^{\mu} \gamma_{\nu} \gamma_{5} A^{\nu} T_{\mu} + \frac{f^{2}}{4} \operatorname{tr} \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}$$

Inclusion of $\frac{1}{2}^{\mp}$ resonances [PRD59, 094025 (1999)]

$$\begin{aligned} \mathcal{L}_{RB}^{s} &= 2s_{d} \left[\operatorname{tr}(\bar{R}\gamma_{\mu}\{A_{\mu}, B\}) - \operatorname{tr}(\bar{B}\gamma_{\mu}\{A_{\mu}, R\}) \right] \\ &+ 2s_{f} \left[\operatorname{tr}(\bar{R}\gamma_{\mu}[A_{\mu}, B]) - \operatorname{tr}(\bar{B}\gamma_{\mu}[A_{\mu}, R]) \right] \\ \mathcal{L}_{B^{*}B}^{s} &= \frac{D^{*}}{2} \left[\operatorname{tr}(\bar{B}^{*}\gamma_{\mu}\gamma_{5}\{A_{\mu}, B\}) + \operatorname{tr}(\bar{B}\gamma_{\mu}\gamma_{5}\{A_{\mu}, B^{*}\}) \right] \\ &+ \frac{F^{*}}{2} \left[\operatorname{tr}(\bar{B}^{*}\gamma_{\mu}\gamma_{5}[A_{\mu}, B]) + \operatorname{tr}(\bar{B}\gamma_{\mu}\gamma_{5}[A_{\mu}, B^{*}]) \right] \\ V^{\mu} &= \frac{1}{2} \left(\xi \partial^{\mu}\xi^{\dagger} + \xi^{\dagger}\partial^{\mu}\xi \right), \quad A^{\mu} &= \frac{i}{2} \left(\xi \partial^{\mu}\xi^{\dagger} - \xi^{\dagger}\partial^{\mu}\xi \right) \\ &\xi &= \exp \frac{i\pi}{f}, \quad \Sigma &= \xi^{2} = \exp \frac{2i\pi}{f} \end{aligned}$$

Previous work results - S-waves

LECs extracted from fit to *S*-waves only:

LEC $[G_F m_\pi^2 \sqrt{2} f_\pi]$ h_D -0.35 ± 0.09 h_F 0.86 ± 0.05 h_C -0.36 ± 0.65

[NPB 375 (1992) 561-581]

• Good agreement with experiment.

Previous work results - S-waves

LECs extracted from fit to *S*-waves only:

LEC $[G_F m_\pi^2 \sqrt{2} f_\pi]$ h_D -0.35 ± 0.09 h_F 0.86 ± 0.05 h_C -0.36 ± 0.65

[NPB 375 (1992) 561-581]

- Good agreement with experiment.
- Decuplet contribution dominates over octet.

Previous work results - S-waves

LECs extracted from fit to *S*-waves only:

LEC $[G_F m_\pi^2 \sqrt{2} f_\pi]$ h_D -0.35 ± 0.09 h_F 0.86 ± 0.05 h_C -0.36 ± 0.65

[NPB 375 (1992) 561-581]

- Good agreement with experiment.
- Decuplet contribution dominates over octet.
- h_C not well determined by 1-loop fit.

Previous work results - P-waves

Using the LECs from S-wave fit:

 $\begin{array}{ccc} \textbf{LEC} & [G_F m_\pi^2 \sqrt{2} f_\pi] \\ \hline h_D & -0.35 \pm 0.09 \\ h_F & 0.86 \pm 0.05 \\ h_C & -0.36 \pm 0.65 \end{array}$

[NPB 375 (1992) 561-581]

- P-waves are poorly described.
- Simultaneous fitting seems unfeasible.