

Deciphering the mechanism of $J/\psi N$ scattering

Bing Wu (UESTC)

University of Electronic Science and Technology of China

In collaboration with X.-K. Dong, M.-L. Du, F.-K. Guo, B.-S. Zou

Based on arXiv: 2409.xxxxx

Aug. 27. 2024 @ Ruhr University Bochum, Germany

The 11th International Workshop on Chiral Dynamics (CD2024)

1 Background

- The interaction between J/ψ and nucleons
 - □ Typical OZI suppression process
 - Interaction through meson exchange is suppressed $(1/N_c)$ G. 't Hooft, Nucl. Phys. B 72 (1974) 461
 - □ Interaction mechanism

Coupled-channel

 $J/\psi N$ - $\Lambda_c \bar{D}^{(*)}/\Sigma_c^{(*)} \bar{D}^{(*)}$ - $J/\psi N$

coupled-channel mechanism (hadronic loops) evade the OZI suppression

H. Lipkin, B.-S. Zou, PRD 53 (1996) 6693-6696

• $J/\psi N$ scattering length

Coupled-channel

□ Coupled-channel mechanism

 $\int_{-\infty}^{\infty} \Lambda_c \bar{D}^{(*)} \text{ contribution:} \quad 0.2 \dots 3 \text{ am} \\ \text{M.-L. Du et al., EPJC 80 (2020) 11, 1053} \\ \sum_{c}^{(*)} \bar{D}^{(*)} \text{ contribution:} \quad 0.1 \dots 10 \text{ am} \\ \text{M.-L. Du et al., JHEP 08 (2021) 157} \\ \end{array}$

Gluon exchanges

□ How about gluon exchange?

Motivation: Calculate the scattering length of $J/\psi N$ under gluon exchange, and then comparing the contributions of gluon exchange and coupled-channel processes.

2 Formalism

2.1 The definition of scattering length

 $J/\psi N$ scattering length:

$$a_0^{J/\psi N} = -\frac{T_{J/\psi N \to J/\psi N,0}(s_{th})}{8\pi\sqrt{s_{th}}} \qquad s_{th} = (m_{J/\psi} + m_N)^2$$

where:
$$\operatorname{Im}[T_{J/\psi N \to J/\psi N,0}(s)] = |T_{J/\psi N \to J/\psi N,0}(s)|^2 \rho_{J/\psi N}(s) \theta(\sqrt{s} - m_{J/\psi} - m_N)$$

 $\rho_{J/\psi N}(s) = \frac{1}{16\pi} \sqrt{\frac{(s - (m_{J/\psi} + m_N)^2)(s - (m_{J/\psi} - m_N)^2)}{s^2}}$

BS equation: $T_l(s) = V_l(s) + V_l(s)G(s)T_l(s) = [1 - V_l(s)G(s)]^{-1}V_l(s)$

Kernel 1: The *S*-wave $J/\psi N$ interaction potential V_0 through gluon exchange

2.2 The S-wave $J/\psi N$ interaction potential

• At long distances, the exchanged soft gluons hadronize into exchanging π and heavier mesons

N. Brambilla et al., Phys. Rev. D 93 (2016) 054002 X.-K. Dong et al., Sci. Bull. 66 (2021) 2462-2470

All possible color-singlet states that can couple to gluons: $\pi\pi$, $K\overline{K}$, ...

The longest-distance (lightest exchange particles) contribution the strong $\pi\pi$ - $K\overline{K}$ coupling

Kernel 2: The *S*-wave $J/\psi N$ interaction potential through correlated $\pi\pi$ - $K\overline{K}$ exchange

• **Crossing relation** A. D. Martin, T. D. Spearman, Elementary particle theory

Unitary and dispersion relation

Kernel 3: The *S*-wave amplitude of $J/\psi J/\psi \to \pi\pi/K\overline{K}$ and $\overline{N}N \to \pi\pi/\overline{K}K$, incorporating $\pi\pi-K\overline{K}$ FSI

Aug. 27 2024

Muskhelishvili-Omnes representation (with LHC)

□ Single-channel: B. Wu et al., PRD 109 (2024) 034026

1	all a dia sina dia si al	the state of the latter of the	a dia si kasa di	a la calla da tura l	and the second second second
be	determined	by matching t	o the tree-le	evel chiral	amplitudes

	LHC	RHC	Total	[33]	[18]	[34]	[37]	[36]	[24]	[23]	m_{σ}
$g_{\Sigma\Sigma\sigma}$	$1.8^{+0.5}_{-0.5}$	$3.5^{+2.0+0.8}_{-1.8-0.9}$	$3.5^{+1.8+0.4}_{-1.3-0.4}$	• • •	••••	10.85(8.92)	4.65		•••	•••	519^{+50}_{-48}
$g_{\Xi\Xi\sigma}$	$0.2^{+0.1}_{-0.1}$	$2.6^{+1.5+0.5}_{-1.4-0.6}$	$2.5^{+1.5+0.5}_{-1.3-0.6}$			• • •	•••		3.4		614_{-81}^{+56}
$g_{\Lambda\Lambda\sigma}$	$1.2^{+0.4}_{-0.3}$	$6.7^{+1.0+1.4}_{-1.1-1.7}$	$6.8^{+1.0+1.1}_{-1.0-1.4}$	• • •		8.18(6.54)	4.37	•••		6.59	596^{+41}_{-51}
9 _{NN}	$2.9^{+0.9}_{-0.8}$	$8.8^{+1.4+1.9}_{-1.4-2.3}$	$8.7^{+1.3+1.1}_{-1.3-1.4}$	12.78	8.46	8.46	8.58	13.85	10.2	9.86	558^{+33}_{-42}
${SU(2) \atop g_{NN\sigma}}$	$2.7^{+0.8}_{-0.8}$	$12.5^{+0.2+2.6}_{-0.2-3.2}$	$12.2^{+0.2+1.9}_{-0.2-2.3}$								586 ⁺³⁸ ₋₄₈

For $g_{NN\sigma}$, see also M. Hoferichter et al., PLB 853 (2024) 138698 and Jacobo Ruiz de Elvira's report yesterday

Coupled-channel: $\vec{T}_{0}(s) = \vec{L}_{0}(s) + \Omega_{0}(s) \left| \vec{P}_{n-1}(s) - \frac{s^{n}}{\pi} \int_{4M^{2}}^{+\infty} \mathrm{d}z \frac{\mathrm{Im} \left[\Omega_{0}^{-1}(z)\right] \vec{L}_{0}(z)}{(z-s)z^{n}} \right|$ For $N\overline{N} \rightarrow \pi\pi/K\overline{K}$: $\left.\begin{array}{c}P_{n-1}^{N\bar{N}\to\pi\pi}(s)\\P_{n-1}^{N\bar{N}\to K\bar{K}}(s)\end{array}\right)$ $\vec{T}_0(s) = \begin{pmatrix} T_{N\bar{N}\to\pi\pi,0}(s) \\ T_{N\bar{N}\to\bar{K}\bar{K},0}(s) \end{pmatrix} \qquad \vec{L}_0(s) = \begin{pmatrix} L_{N\bar{N}\to\pi\pi,0}(s) \\ L_{N\bar{N}\to\bar{K}\bar{K},0}(s) \end{pmatrix}$ $\Omega_{0}(s) = \left(\begin{array}{cc} \Omega_{0,11}(s) & \Omega_{0,12}(s) \\ \Omega_{0,21}(s) & \Omega_{0,22}(s) \end{array}\right)$ $\vec{P}_{n-1}(s) =$ where matching to the tree-level chiral amplitudes LO Chiral Lagrangian **NLO Chiral Lagrangian** M. Frink and U.-G. Meißner, JHEP 07, 028 J. A. Oller et al., JHEP 09, 079 A. Krause, Helv. Phys. Acta 63 (1990) 3-70 LECs taken from X.-L. Ren et al., JHEP 12 (2012) 073 ናት $\longrightarrow P_{n-1}^{N\bar{N}\to\pi\pi}(s) \sim A_{N\bar{N}\to\pi\pi,0}(s)$ $L_{N\bar{N}\to\pi\pi,0}(s) \sim \hat{A}_{N\bar{N}\to\pi\pi,0}(s)$ \overline{N} N (c) (b) (a) $L_{N\bar{N}\rightarrow K\bar{K},0}(s)\sim \hat{A}_{N\bar{N}\rightarrow K\bar{K},0}(s) \blacktriangleleft$ $P_{n-1}^{N\bar{N}\to K\bar{K}}(s) \sim A_{N\bar{N}\to K\bar{K},0}(s)$ (f) (d) (e)

FIG. 2. The tree-level Feynman diagrams for the process of $N\bar{N} \rightarrow \pi\pi$ and $N\bar{N} \rightarrow K\bar{K}$.

For $J/\psi J/\psi \rightarrow \pi\pi/K\overline{K}$:

X.-K. Dong et al., Sci. Bull. 66 (2021) 2462-2470

$$\begin{aligned} \operatorname{disc} \left(\bigvee_{J/\psi} \overline{N} \right) \left(\bigcup_{J/\psi} \overline{n} \right) \left(\bigvee_{I/\psi} \overline{n} \right) \left(\bigvee_{\pi} \overline{n} \right) \left(\bigvee_{\pi} \overline{N} \right)^{*} \left(\bigvee_{\pi} \overline{N} \right)^{*} \left(\bigvee_{I/\psi} \overline{k} \right) \left(\bigvee_{\pi} \overline{N} \right)^{*} \left(\bigvee_{I/\psi} \overline{k} \right) \left(\bigvee_{\pi} \overline{N} \right)^{*} \left(\bigvee_{\pi} \overline{$$

determine the low-energy constants(LECs) by fitting the BESII data on the $\psi(2S) \rightarrow J/\psi \pi \pi$

the updated values:

$$c_1^{(21)} = 0.178 \pm 0.002, \ c_2^{(21)} = -0.122 \pm 0.002, \ c_m^{(21)} = 0.222 \pm 0.002$$

11/15

3 Numerical Result

• Numerical result with LECs arising from the BESII data on the $\psi(2S) \rightarrow J/\psi \pi \pi$

S-wave $J/\psi N$ scattering length through soft gluon exchange:

 $\tilde{a}_0^{J/\psi N} = -0.16... - 0.19 \text{ fm}$

The interaction between J/ψ and N is attractive The strength is comparable to the S-wave isospin-0 $\pi\pi$ interaction $a_{00}^{\pi\pi} = -0.2210 \pm 0.0047 \pm 0.0015$ fm

J.R. Batley et al., PLB 633 (2006) 173-182 B. Bloch-Devaux, PoS KAON09 (2009) 033

- Inequality of Scattering Lengths Best fit--DP 60 Best fit--HD dΓ/dcos θ [keV] dΓ/dm_m[10⁻⁴] **BESII** data A. Sibirtsev et al., PRD 71 (2005) 076005 **The chromopolarisability** Best fit--DP $\mathcal{M}(A \to B\pi\pi) = \alpha_{AB} (\pi\pi | \vec{E}^a \cdot \vec{E}^a | 0)$ Best fit--HD BESII data 0.30 0.35 0.40 0.45 0.50 0.55 0.60 -1.0-0.5 1.0 0.0 0.5 m_{nn} [GeV] $\cos \theta_{\pi}$ FIG. 4. Fit to the BESII data on $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ [71]. "Best fit–DP" represents the fit results using the Omnès matrix from Ref. [62], while "Best fit–HD" represents those from Ref. [50]. chromopolarisability $\tilde{a}_0^{J/\psi N} = -0.16... - 0.19 \text{ fm}$ **D** The previous numerical result is based on $\alpha_{\psi(2S)J/\psi}$ $\alpha_{1b(2S)I/\psi}$
- $\alpha_{\psi(2S)\psi(2S)}\alpha_{I/\psi I/\psi} \ge |\alpha_{\psi(2S)I/\psi}|^2$
- Keep the previous calculation unchanged and replace $m_{I/\psi}$ with $m_{\psi(2S)}$

$$\widetilde{a}_0^{\psi(2S)N} = -0.14... - 0.17 \text{ fm}$$

$$\alpha_{\psi(2S)J/\psi}$$

□ Scattering length inequality

$$a_0^{J/\psi N} a_0^{\psi(2S)N} \ge \tilde{a}_0^{J/\psi N} \tilde{a}_0^{\psi(2S)N} \approx (-0.15 \text{ fm})^2$$

Compared with Coupled-channel mechanism

```
- \Lambda_c \bar{D}^{(*)} \text{ contribution:} \qquad 0.2 \dots 3 \text{ am}
M.-L. Du et al., EPJC 80 (2020) 11, 1053
- \Sigma_c^{(*)} \bar{D}^{(*)} \text{ contribution:} \qquad 0.1 \dots 10 \text{ am}
```

At least one order of magnitude smaller than the result from the soft gluon exchange!

4 Summary

• We estimate the *S*-wave scattering length of $J/\psi N$ through soft gluon exchange (correlated $\pi\pi$ - $K\overline{K}$)

 $\tilde{a}_0^{J/\psi N} = -0.16\dots - 0.19 \text{ fm}$

The same process to estimate the scattering length for $\psi(2S)N$ through soft gluon exchange:

$$\tilde{a}_0^{\psi(2S)N} = -0.14\ldots - 0.17 \text{ fm}$$

After chromopolarisability correction:

 $a_0^{J/\psi N} a_0^{\psi(2S)N} \ge \tilde{a}_0^{J/\psi N} \tilde{a}_0^{\psi(2S)N} \approx (-0.15 \text{ fm})^2$

In the low-energy interaction of $J/\psi N$, the contribution from soft gluon exchange is dominant

Thank you very much for your attention!

Aug. 27 2024

Bing Wu | Deciphering the mechanism of $J/\psi N$ scattering

15/15