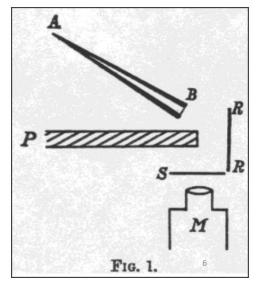


Recent results on hyperon-nucleon interactions at BESIII

Jielei Zhang (zhangjielei@ihep.ac.cn)

Henan University

Outline


- Motivation
- BEPCII and BESIII
- > Study of $\Xi^0 n \to \Xi^- p$ PRL 130, 251902 (2023)
- > Study of $\Lambda N \rightarrow \Sigma^+ X$ PRC 109, L052201 (2024)
- > Study of $\Lambda p \to \Lambda p$ and $\overline{\Lambda} p \to \overline{\Lambda} p$ PRL 132, 231902 (2024)
- **≻**Summary

Scattering experiments of particle beams bombarding target materials

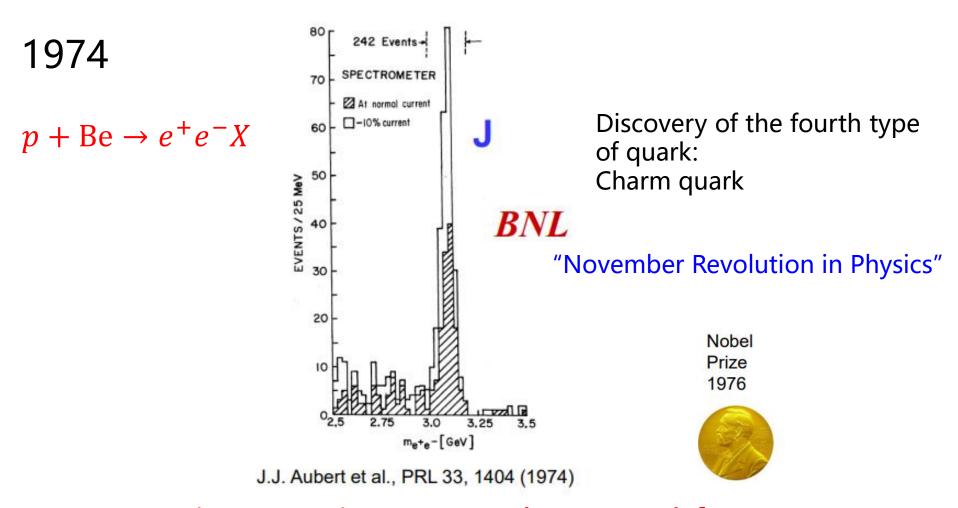
1911

 α + Au

Nuclear structure model of atom

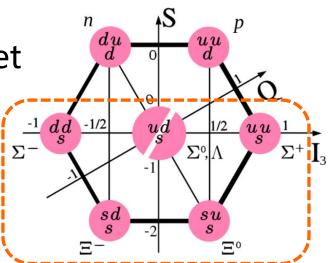
1919 $\alpha + N$

Observation of proton


1932 $\alpha + Be$

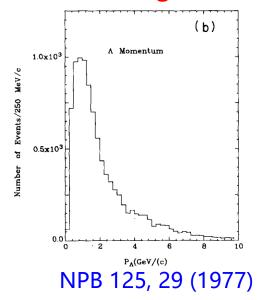
Observation of neutron

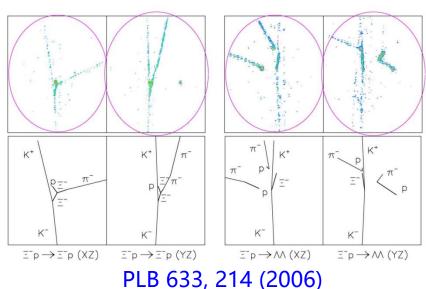
Scattering experiments of particle beams bombarding target materials



Scattering experiment must have **particle source**, target material, and detector.

Hyperon source


Baryon octet


One of main goals of nuclear physics is to understand baryonbaryon interaction in a unified perspective

Limited by availability and short-lifetime of hyperon beams

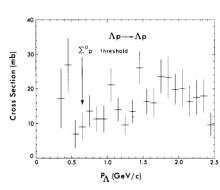
 \succ Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with K^- .

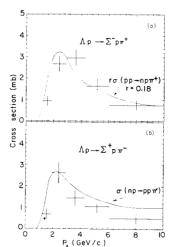
Hyperon source

- \succ Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with K^- .
- > Intensity of hyperon beams is low, experimental measurements are scarce and have large uncertainty.

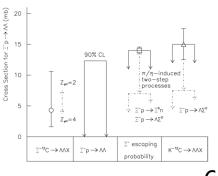
> No anti-hyperon source.

Reaction	Number of events	
$\Lambda p \rightarrow \Lambda p \text{ (elastic)}$	584	(1)
$\Lambda p \rightarrow \Sigma^- p \pi^+$	132	(2)
$\Lambda p \rightarrow \Sigma^+ p \pi^-$	60	(3)
$\Lambda p \to \Lambda p \pi^+ \pi^-$	181	(4)
$\Lambda p \to \Sigma^0 p$	35	(5)
various Ξ^0 p interactions	25	

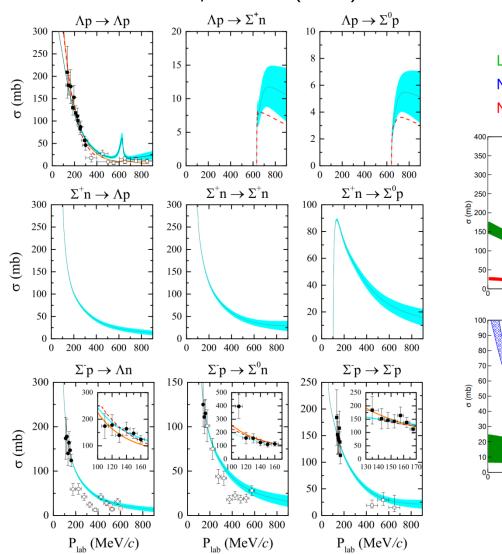

PLB 38, 123 (1972)


reaction	events *	signature	cross-section events **	cross-section (mb)
$\Xi^{o} + p \rightarrow \Xi^{o} + p$	2	к, Λ	1	8
$\Xi^{o} + p \longrightarrow \Lambda + \Sigma^{+}$	6	Λ	4	24
$\Xi^{o} + p \longrightarrow \Sigma^{o} + \Sigma^{+}$	1	Λ	1	6
$\Xi^{O} + p \longrightarrow \pi^{+} + \Lambda + \Lambda$	1	К,Λ	1	6
$\Xi^{O} + p \longrightarrow \pi^{O} + \Lambda + \Sigma^{+}$	1	Λ	1	6
$\Xi^{O} + p \rightarrow \pi^{+} + \Xi^{-} + p$	1	K or Λ	1	5
$\Xi^{O} + p \longrightarrow \pi^{+} + \pi^{+} + \Xi^{-} + n$	1	к,Λ	1	6
$\Xi^{O} + p \rightarrow \Xi^{-} + p$	2	Λ	2	8
$\Xi^{o} + p \longrightarrow \Sigma^{-} + \Sigma^{+}$	1	K	1	4
$\Xi^{O} + p \rightarrow \Sigma^{-} + K^{O} + p$	1	K	1	4

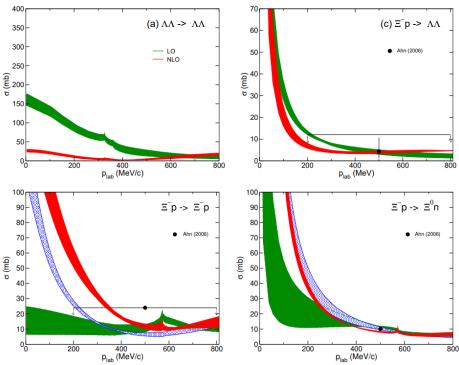
PLB 32, 720 (1970)


Reaction	Momentum interval (GeV/c)	Number	σ (mb)
	interval (Gev/c)	or events	
Λp →all	0.5 → 1.0		25.8 ± 6.2
-	1.0 → 1.5		31.3 ± 6.5
	$1.5 \rightarrow 2.0$		42.8 ± 7.1
	$2.0 \rightarrow 2.5$		37.5 ± 7.2
	$2.5 \rightarrow 3.0$		34.1 ± 8.3
	3.0 → 4.0		41.8 ± 10.0
$\Lambda_{\mathbf{p}} \rightarrow \Lambda_{\mathbf{p}}$	0.5 → 1.0	20	22.2± 5.0
	$1.0 \rightarrow 1.5$	21	12.9 ± 2.8
	$1.5 \rightarrow 2.0$	37	22.0 ± 3.6
	$2.0 \rightarrow 2.5$	28	16.1 ± 3.1
	$2.5 \rightarrow 3.0$	12	11.0 ± 3.2
	3.0 →4.0	13	12.5 ± 3.4
$\Lambda p \rightarrow \Sigma^0$	0.66→4.0	11	1.5 ± 0.5
$\Lambda p \rightarrow \Lambda p \pi^0$	$0.88 \rightarrow 4.0$	29	4.1 ± 0.8
$\Lambda p \rightarrow \Lambda p \pi^+ \pi^-$	1.36 - 4.0	12	1.9 ± 0.6
Σ+p →Σ+p	0.5 → 1.5	10	31.2 ± 10.1
	$1.5 \rightarrow 2.5$	8	18.7 ± 6.6
	$2.5 \rightarrow 4.0$	4	15.3 ± 7.8
Σ ⁻ p →Σ ⁻ p	0.5 →1.5	6	13.2 ± 4.7
- F - F	1.5 → 2.5	11	13.9 ± 4.1
	2.5 →4.0	4	7.5 ± 3.8
Ξ~p -⁄Ξ ⁻ p	1.0 → 4.0	6	13 ± 6
Ξο _p Ξο _p	$1.0 \rightarrow 4.0$	4	19 ± 10

NPB 125, 29 (1977)



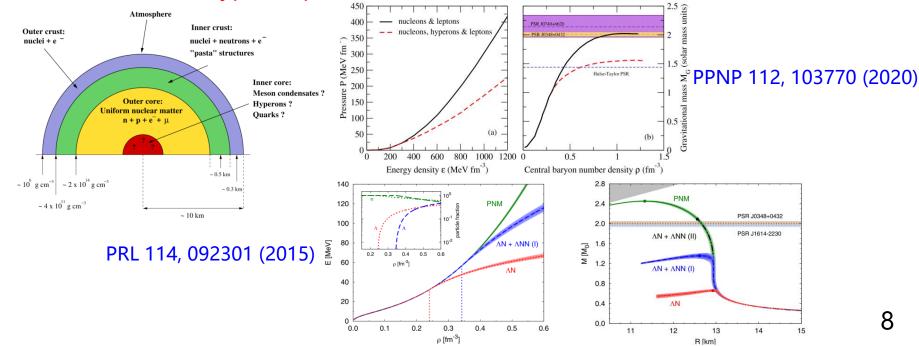
PLB 633, 214 (2006)



Theory of hyperon-nucleon (YN) interaction has large uncertainty due to lack of relevant measurements

PRC 105, 035203 (2022)

LO: H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

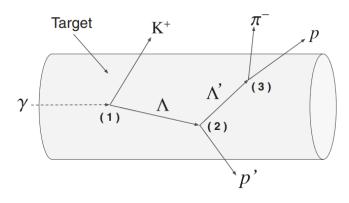


"Hyperon puzzle" of neutron stars

Hyperons are believed to be appeared in inner core of neutron stars.

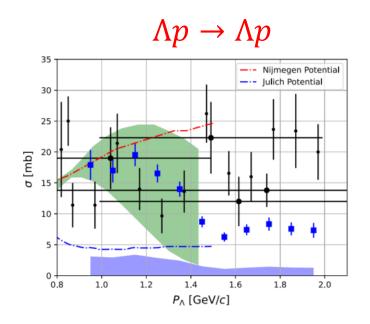
$$\begin{array}{lll} B_{1} \to B_{2} + l + \bar{\nu}_{l}, \ B_{2} + l \to B_{1} + \nu_{l} \\ n \to p + e^{-} + \bar{\nu}_{e}, p + e^{-} \to n + \nu_{e} \\ \Lambda \to p + e^{-} + \bar{\nu}_{e}, p + e^{-} \to \Lambda + \nu_{e} \end{array} \qquad \begin{array}{ll} \Sigma^{-} \to n + e^{-} + \bar{\nu}_{e}, n + e^{-} \to \Sigma^{-} + \nu_{e} \\ \Xi^{-} \to \Lambda + e^{-} + \bar{\nu}_{e}, \Lambda + e^{-} \to \Xi^{-} + \nu_{e} \end{array}$$

- > Appearance of hyperons softens equation of state, lead to maximum mass that neutron stars can sustain is less than mass of already-observed neutron stars.
- > A repulsive force is introduced to stiffen equation of state in theory, such as a combination of ΛN and ΛNN interactions. Study of hyperon-nucleon interaction is crucial to solve "hyperon puzzle" of neutron stars.



Some recent experimental results on hyperon-nucleon scattering

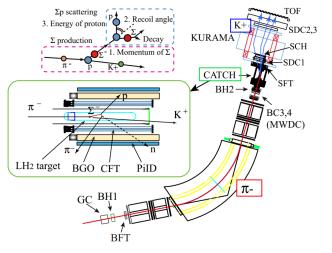
PHYSICAL REVIEW LETTERS 127, 272303 (2021)

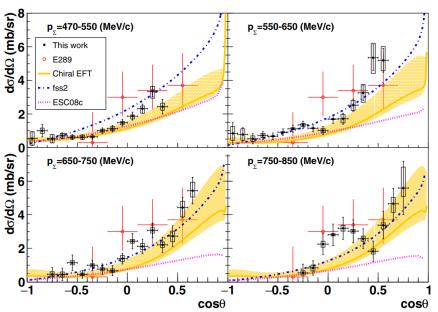

(CLAS Collaboration)

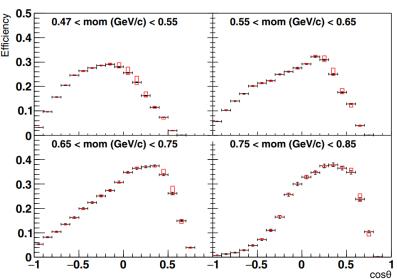
Improved Λp Elastic Scattering Cross Sections between 0.9 and 2.0 GeV/c as a Main Ingredient of the Neutron Star Equation of State

$$\sigma(p_{\Lambda}) = \frac{Y(p_{\Lambda})}{A(p_{\Lambda}) \times \mathcal{L}(p_{\Lambda}) \times \Gamma}$$

$$\mathcal{L}(p_{\Lambda}) = \frac{N_A \times \rho_T \times l}{M} N_{\Lambda}(p_{\Lambda})$$




This is the first data on this reaction since the 1970s.

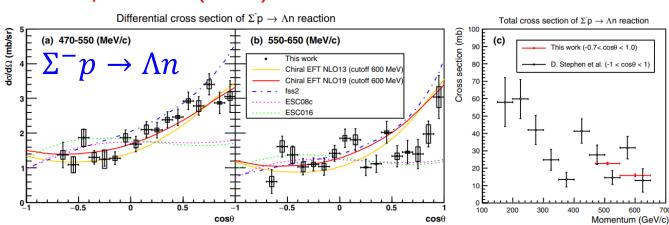

Some recent experimental results on hyperon-nucleon scattering

J-PARC E40 Collaboration

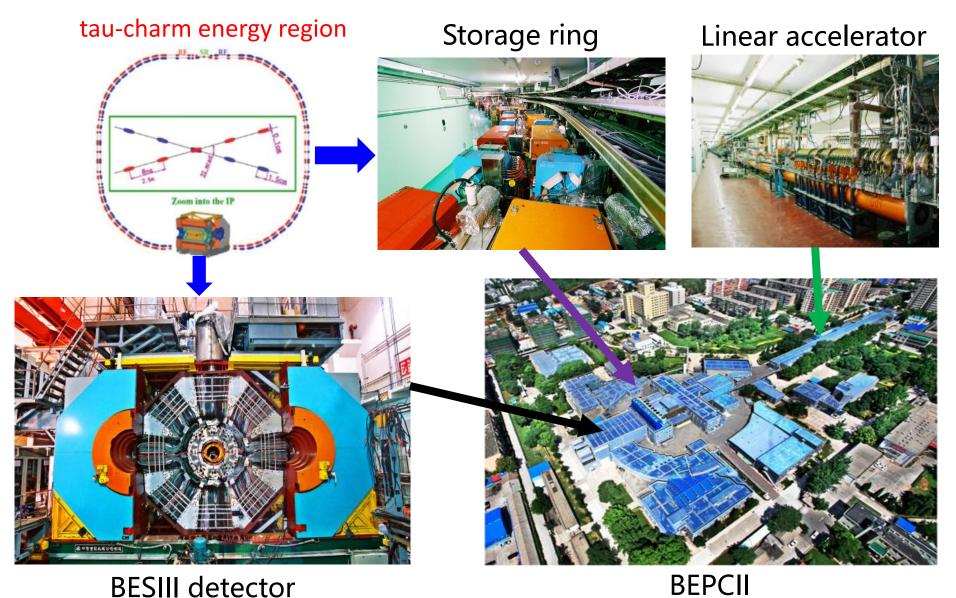
PRC 104, 045204 (2021)

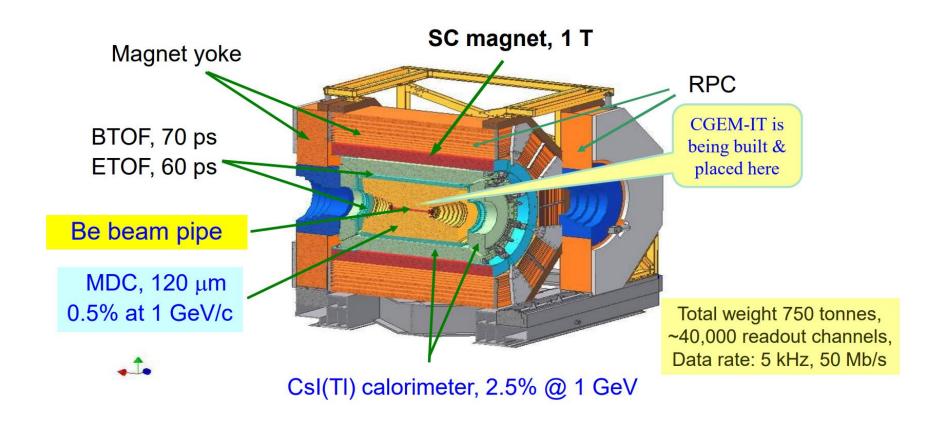
$$\Sigma^- p \rightarrow \Sigma^- p$$

Some recent experimental results on hyperon-nucleon scattering

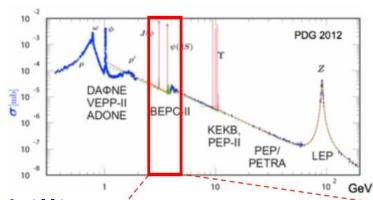

J-PARC E40 Collaboration

PTEP 2022, 093D01 (2022)

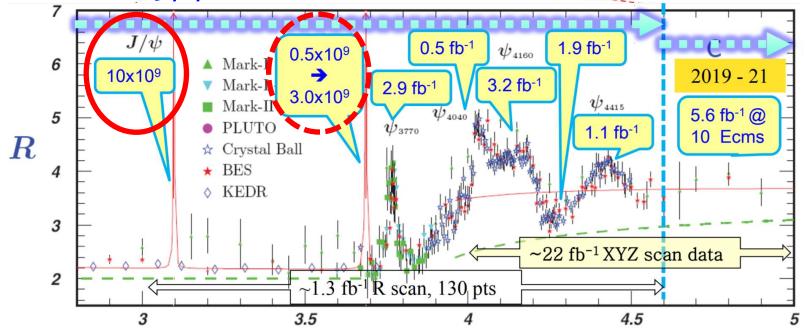



PRL 128, 072501 (2022)

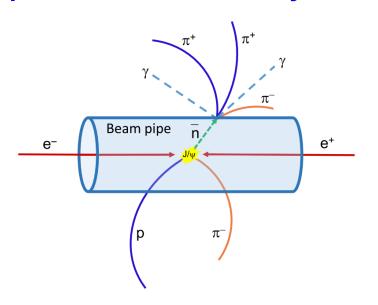
Beijing Electron Positron Collider II (BEPCII) and Beijing Spectrometer III (BESIII)



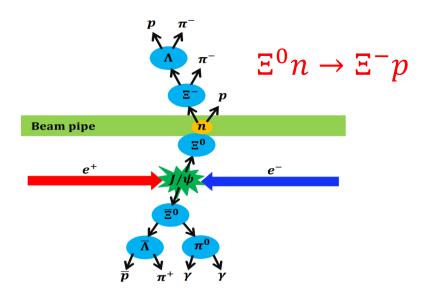
BESIII detector


Has been in full operation since 2008, all subdetectors are in very good status!

BESIII data samples



BESIII has collected the largest data samples of the J/ψ and $\psi(3686)$ in the world, and $> 20 \text{ fb}^{-1}$ above 4.0 GeV in total.


10 billion J/ψ events

Experimental study on particle targeting at BESIII

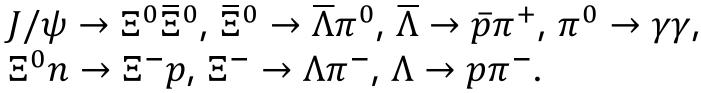
PRL 127, 012003 (2021) CPC 48, 073003 (2024) $\bar{n}p \to \pi^+\pi^+\pi^-\pi^0, \pi^0 \to \gamma\gamma$

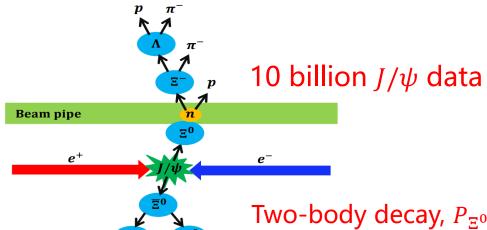
particle source: hyperon from J/ψ decays

target material: beam pipe

detector: BESIII detector

15

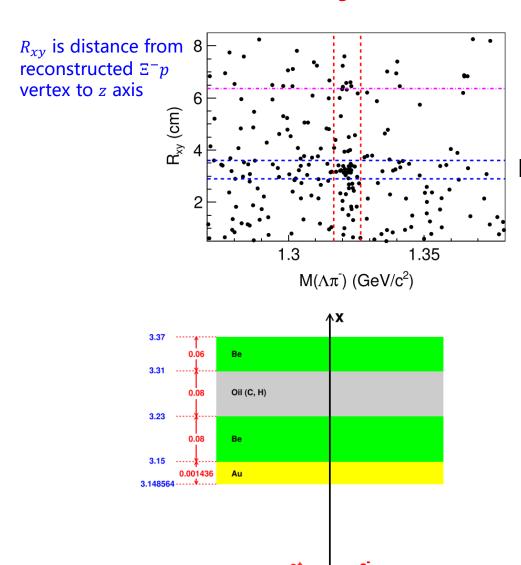

Recent results on hyperon-nucleon scattering at BESIII


- First Study of Reaction $\Xi^0 n \to \Xi^- p$ Using Ξ^0 -Nucleus Scattering at an Electron-Positron Collider PRL 130, 251902 (2023)
- First measurement of ΛN inelastic scattering with Λ from $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$ PRC 109, L052201 (2024)
- First Study of Antihyperon-Nucleon Scattering $\overline{\Lambda}p \to \overline{\Lambda}p$ and Measurement of $\Lambda p \to \Lambda p$ Cross Section PRL 132, 231902 (2024)

Study of $\Xi^0 n \to \Xi^- p$

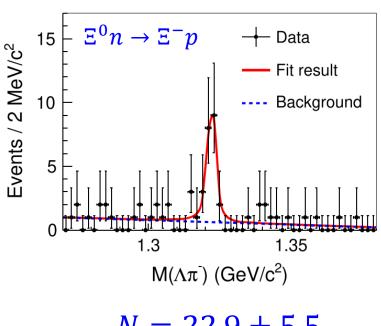
Reaction chain:

PRL 130, 251902 (2023)


Two-body decay, $P_{\Xi^0} \approx 0.818 \text{ GeV}/c$, a very small horizontal crossing angle of 11 mrad for e^+ and e^- beams.

Analysis method:

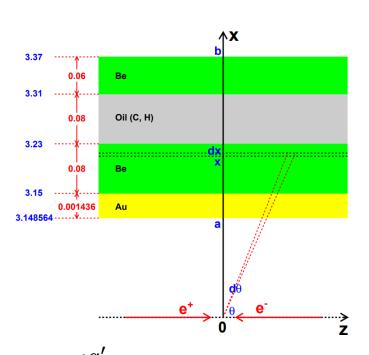
Using Ξ^0 to tag the event and requiring the recoiling mass in Ξ^0 region. Then reconstructing Ξ^- and p in the signal side.


17

Study of $\Xi^0 n \to \Xi^- p$

Inner wall of MDC

Beam pipe



$$N = 22.9 \pm 5.5$$

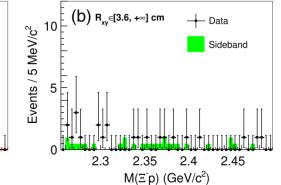
 $S = 7.1\sigma$

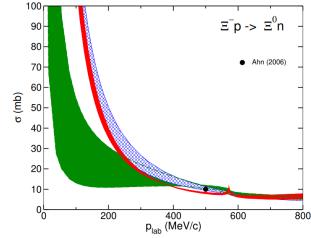
Cross section of $\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}$

$$\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = \frac{N^{\text{sig}}}{\epsilon \mathcal{B} \mathcal{L}_{\text{eff}}}$$

$$\mathcal{L}_{\text{eff}} = \frac{N_{J/\psi} \mathcal{B}_{J/\psi}}{2 + \frac{2}{3} \alpha} \int_{a}^{b} \int_{0}^{\pi} (1 + \alpha \cos^{2}\theta) e^{-\frac{x}{\sin\theta\beta\gamma L}} N(x) C(x) d\theta dx$$

Parameter	Result
N^{sig}	22.9 ± 5.5
ϵ	1.873%
\mathcal{B}	$(40.114 \pm 0.444)\%$ [53]
$N_{J/\psi}$	$(1.0087 \pm 0.0044) \times 10^{10}$ [46]
$\mathcal{B}_{J/\psi}$	$(0.117 \pm 0.004)\%$ [53]
α	0.514 ± 0.016 [56]
L	(8.69 ± 0.27) cm [53]
$E_{\rm beam}$	1.5485 GeV
m_{Ξ^0}	$(1.31486 \pm 0.00020) \text{ GeV}/c^2 [53]$
a	3.148564 cm [45]
b	3.37 cm [45]
N(x)	$\int 5.91 \times 10^{22} \text{ cm}^{-3}$, $3.148564 \le x \le 3.15 \text{ cm}$
	$\int 1.24 \times 10^{23} \text{ cm}^{-3}$, $3.15 < x \le 3.23 \text{ cm}$
	$3.45 \times 10^{22} \text{ cm}^{-3}$, $3.23 < x \le 3.31 \text{ cm}$
	$1.24 \times 10^{23} \text{ cm}^{-3}$, $3.31 < x \le 3.37 \text{ cm}$
C(x)	$8.437(23.6)$, $3.148564 \le x \le 3.15$ cm
	$\begin{cases} 1.000(1.00), & 3.15 < x \le 3.23 \text{ cm} \\ 1.090(1.20), & 3.23 < x \le 3.31 \text{ cm} \end{cases}$
	$1.090(1.20), 3.23 < x \le 3.31 \text{ cm}$
mption	$1.000(1.00)$, $3.31 < x \le 3.37$ cm


 $\sigma \propto A^{\alpha'}$ pure surface process assumption α' is about $\frac{2}{3} \sim 1$ (proportional to number of neutrons)

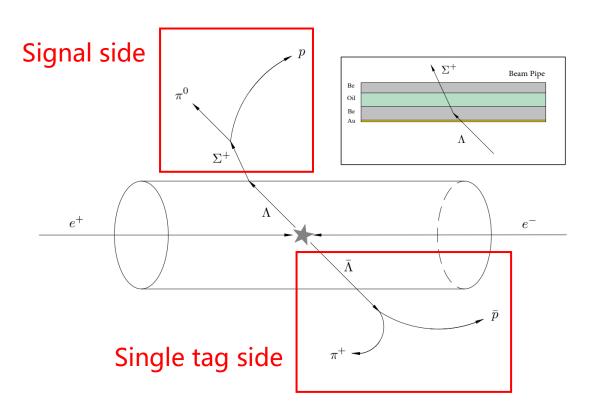

Study of $\Xi^0 n \to \Xi^- p$

The measured cross section of the reaction process $\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}$ is $\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3_{\text{stat}} \pm 4.5_{\text{sys}})$ mb at $P_{\Xi^0} \approx 0.818 \text{ GeV}/c$.

If we take the effective number of reaction neutrons in ${}^9\mathrm{Be}$ nucleus as 3, the cross section of $\Xi^0 n \to \Xi^- p$ for single neutron is determined to be $\sigma(\Xi^0 n \to \Xi^- p) = (7.4 \pm 1.8_{\mathrm{stat}} \pm 1.5_{\mathrm{sys}})$ mb, consistent with theoretical predictions.

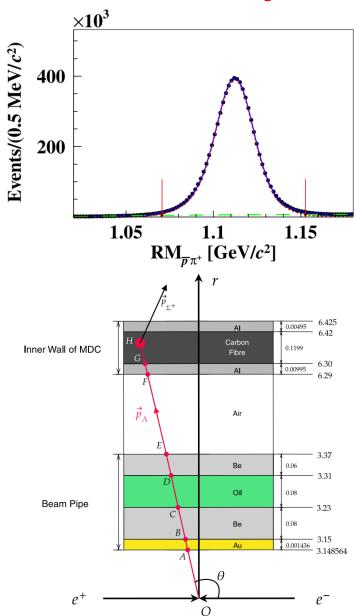
LO: H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

No significant H-dibaryon signals are seen

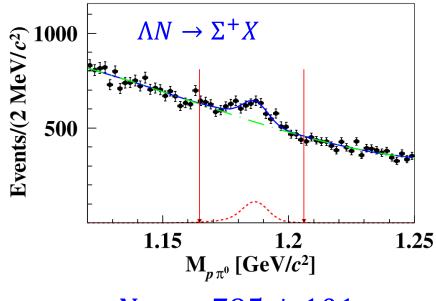

This work is the first study of hyperon-nucleon interaction in electron-positron collisions, and opens up a new direction for such research.

Study of $\Lambda N \rightarrow \Sigma^+ X$

PRC 109, L052201 (2024)


Reaction chain:

$$J/\psi \to \Lambda \overline{\Lambda}, \ \overline{\Lambda} \to \overline{p}\pi^+, \ \Lambda + N(\text{nucleus}) \to \Sigma^+ + X(\text{anything}), \ \Sigma^+ \to p\pi^0, \ \pi^0 \to \gamma\gamma.$$

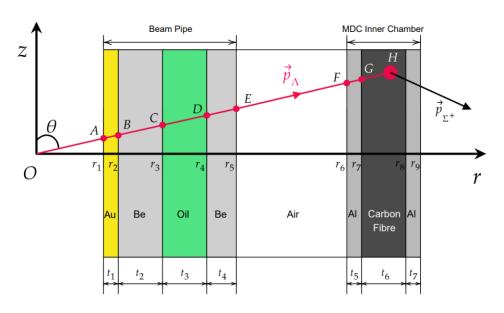


Two-body decay, $P_{\Lambda} \approx 1.074 \, \text{GeV/}c$, a very small horizontal crossing angle of 11 mrad for e^+ and e^- beams, resulting in a small range of 0.017 $\, \text{GeV/}c$ above and below 1.074 $\, \text{GeV/}c$ for P_{Λ} .

Study of $\Lambda N \rightarrow \Sigma^+ X$

$$N_{\rm ST} = 7207565 \pm 3741$$

$$N_{\rm DT} = 795 \pm 101$$


The reaction position can not be determined.

These signal events mainly come from the reaction with beam pipe and inner wall of MDC.

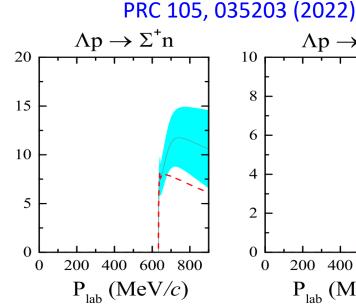
Cross section of $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$

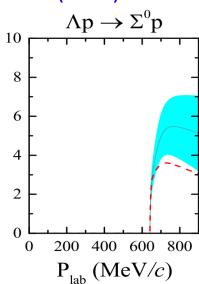
$$\sigma(\Lambda + {}^{9}\text{Be} \to \Sigma^{+} + X) = \frac{N_{\text{DT}}}{\epsilon_{\text{sig}}\mathcal{L}_{\Lambda}} \frac{1}{\mathcal{B}(\Sigma^{+} \to p\pi^{0})}$$

$$\mathcal{L}_{\Lambda} = N_{\mathrm{ST}} \frac{N_{A}}{N_{\mathrm{ST}}^{\mathrm{MC}}} \sum_{j}^{7} \sum_{i}^{N_{\mathrm{ST}}^{\mathrm{MC}}} \frac{\rho_{T}^{j} l^{ij}}{M^{j}} \mathcal{R}_{\sigma}^{j}$$
 path length of incident Λ of i_{th} event inside j_{th} layer

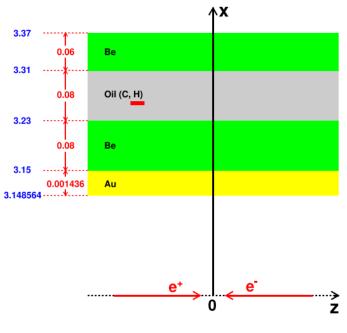
pure surface process assumption (proportional to number of protons)

Parameter	Value
$N_{ m DT}$	795 ± 101
$\epsilon_{ m sig}$	24.32%
\mathcal{L}_{Λ}	$(17.00 \pm 0.01) \times 10^{28} \mathrm{cm}^{-2}$
$\mathcal{B}(\Sigma^+ \to p\pi^0)$	$(51.57 \pm 0.30)\%$

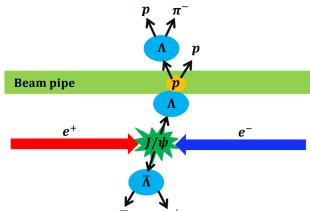

Study of $\Lambda N \to \Sigma^+ X$

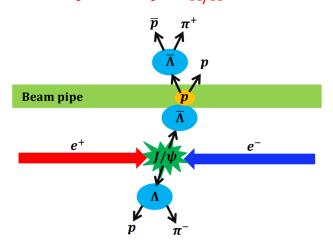

The measured cross section of the reaction process $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$ is $\sigma(\Lambda + {}^{9}\text{Be} \to \Sigma^{+} + X) = (37.3 \pm 4.7_{\text{stat}} \pm 3.5_{\text{svs}}) \text{ mb at } P_{\Lambda} \approx 1.074 \text{ GeV/}c. \text{ This}$ work represents the first attempt to investigate Λ -nucleus interaction at an e^+e^- collider.

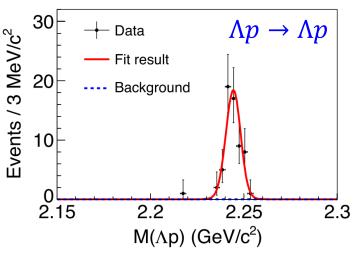
If taking the effective number of reaction protons in ⁹Be nucleus as 1.93, the cross section of $\Lambda p \to \Sigma^+ X$ for single proton is determined to be $\sigma(\Lambda p \rightarrow \Sigma^+ X) = (19.3 \pm 2.4_{\text{stat}} \pm 1.8_{\text{sys}}) \text{ mb.}$


 $\sigma(\Lambda p \to \Sigma^+ n)$ is twice of $\sigma(\Lambda p \to \Sigma^0 p)$

NPB 125, 29 (1977) $\sigma (\Lambda p \rightarrow \Sigma^{\circ} p)$ This experiment 101 $\Sigma^{\sim} p \longrightarrow \Lambda n$. 0.5 1.0 2.0 2.5 P_A (GeV/c)

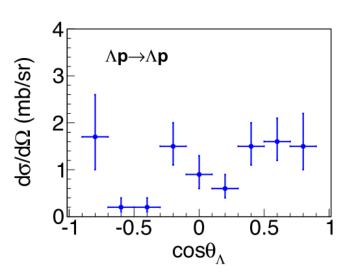


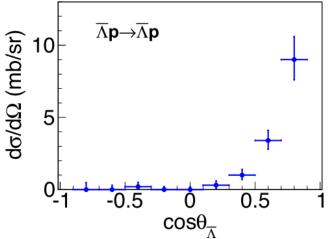

PRL 132, 231902 (2024)


Taking the hydrogen in the cooling oil of the beam pipe as target material, the information on the hyperon-proton scattering can be extracted directly.

Two-body decay, $P_{\Lambda/\overline{\Lambda}} \approx 1.074 \text{ GeV}/c$

The center-of-mass energy for the incident $\Lambda/\overline{\Lambda}$ and a static p is about 2.243 GeV/ c^2 .

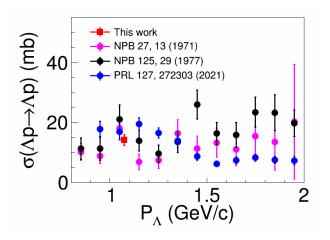

30 — Data
$$\Lambda p \rightarrow \Lambda p$$

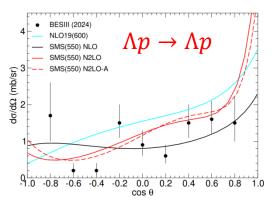

We still 10 — Background 10 — Background 10 — Background 10 — 2.15 2.2 2.25 2.3 M(Λp) (GeV/c²)

$$\sigma(\Lambda p \to \Lambda p/\bar{\Lambda}p \to \bar{\Lambda}p) = \frac{N_{\Lambda p/\bar{\Lambda}p}^{\text{sig}}}{\epsilon_{\Lambda p/\bar{\Lambda}p}\mathcal{B}\mathcal{L}_{\text{eff}}}$$

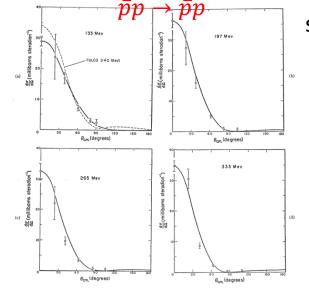
$$\mathcal{L}_{\text{eff}} = \frac{N_{J/\psi}\mathcal{B}_{J/\psi}}{2 + \frac{2}{3}\alpha} \int_{a}^{b} \int_{0}^{\pi} (1 + \alpha \cos^{2}\theta) e^{-\frac{x}{\sin\theta\beta\gamma L}} N_{H} d\theta dx$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{i} = \frac{N_{i}^{\text{sig}}}{\epsilon_{i}\mathcal{B}\mathcal{L}_{\text{eff}}\Delta\Omega}$$



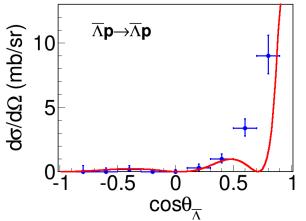

$\cos heta_{\Lambda/ar{\Lambda}}$	$N_i^{ m sig}$	ϵ_i (%)	$(d\sigma/d\Omega)$ (mb/sr)
[-0.9, -0.7]	$(5.0^{+2.6}_{-1.9}, 0.0^{+1.1}_{-0.0})$	(6.94,4.93)	$(1.7^{+0.9}_{-0.7}, 0.0^{+0.5}_{-0.0})$
_	$(1.0^{+1.4}_{-0.7}, 0.0^{+1.1}_{-0.0})$	(14.13, 10.44)	$(0.2^{+0.2}_{-0.1}, 0.0^{+0.3}_{-0.0})$
(-0.5, -0.3]	$(1.0^{+1.4}_{-0.7}, 1.0^{+1.4}_{-0.7})$	(17.32, 13.27)	$(0.2^{+0.2}_{-0.1}, 0.2^{+0.3}_{-0.1})$
(-0.3, -0.1]	$(11.0^{+3.7}_{-3.0}, 0.0^{+1.1}_{-0.0})$		$(1.5^{+0.5}_{-0.4}, 0.0^{+0.2}_{-0.0})$
(-0.1, 0.1]	$(6.9^{+3.0}_{-2.3}, 0.0^{+1.1}_{-0.0})$	(19.11,15.79)	$(0.9^{+0.4}_{-0.3}, 0.0^{+0.2}_{-0.0})$
(0.1, 0.3]	$(5.0^{+2.6}_{-1.9}, 2.0^{+1.8}_{-1.1})$	(19.53,16.82)	$(0.6^{+0.3}_{-0.2}, 0.3^{+0.3}_{-0.2})$
(0.3, 0.5]	$(12.0^{+3.8}_{-3.1}, 7.0^{+3.0}_{-2.3})$	(19.21,17.68)	$(1.5^{+0.5}_{-0.4}, 1.0^{+0.4}_{-0.3})$
(0.5, 0.7]	$(13.0^{+3.9}_{-3.3}, 25.0^{+5.3}_{-4.7})$	(19.71,17.60)	$(1.6^{+0.5}_{-0.4}, 3.4^{+0.7}_{-0.6})$
(0.7, 0.9]	$(6.0^{+2.8}_{-2.1}, 37.0^{+6.4}_{-5.8})$	(9.80,9.93)	$(1.5^{+0.7}_{-0.5}, 9.0^{+1.6}_{-1.4})$

Cross sections in $-0.9 \le \cos\theta_{\Lambda/\overline{\Lambda}} \le 0.9$ are measured to be


$$\sigma(\Lambda p \to \Lambda p) = (12.2 \pm 1.6_{\rm stat} \pm 1.1_{\rm sys}) \text{ mb and}$$

 $\sigma(\overline{\Lambda} p \to \overline{\Lambda} p) = (17.5 \pm 2.1_{\rm stat} \pm 1.6_{\rm stat}) \text{ mb}$

Total cross sections are determined to be $\sigma_t(\Lambda p \to \Lambda p) = (14.2 \pm 1.8_{\rm stat} \pm 1.3_{\rm sys})$ mb and $\sigma_t(\overline{\Lambda} p \to \overline{\Lambda} p) = (27.4 \pm 3.2_{\rm stat} \pm 2.5_{\rm sys})$ mb



Phys. Rev. 112, 1303 (1958) "black sphere" scattering

$$\frac{d\sigma}{d\Omega} = k^2 R^4 \left[\frac{J_1(2kR\sin(\theta/2))}{2kR\sin(\theta/2)} \right]^2,$$

strong absorption/annihilation

J. Haidenbauer and U. G. Mei β ner, EPJA 60, 119 (2024)

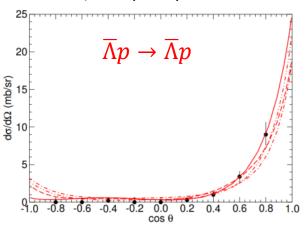


Fig. 1 Differential cross section for $p\bar{\Lambda}$ scattering at $p_{lab} = 1.074 \pm 0.017 \text{ GeV}$ [59]. The curves are predictions by the $\Lambda\bar{\Lambda}$ interactions I-IV, see Ref. [35], at 1.05 GeV/c.

Table 2 $\Lambda\bar{\Lambda}$ scattering lengths (in fm) in the ${}^{1}S_{0}$ and ${}^{3}S_{1}$ partial waves of the employed $\Lambda\bar{\Lambda}$ potentials [41,43]. The spin-averaged value by the ALICE Collaboration is from an analysis of the $\Lambda\bar{\Lambda}$ correlation function measured in Pb-Pb collisions [21]

potential	$a(^{1}S_{0})$	$a(^{3}S_{1})$	
I	0.32 - i0.52	0.74 - i0.56	
II	0.67 - i1.14	0.66 - i0.37	
III	1.42 - i1.15	1.00 - i0.44	
IV	1.56 - i1.40	0.98 - i0.65	
ALICE	$(0.90 \pm 0.16) - i(0.40 \pm 0.18)$		

Some ongoing researches on hyperonnucleon scattering at BESIII

$$ho$$
 $\Sigma^+ n o \Lambda p$, $\Sigma^+ n o \Sigma^0 p$
 ho $\Xi^0 n o \Lambda \Lambda$, $\Xi^- p o \Lambda \Lambda$
 ho $\Sigma^+ p o \Sigma^+ p$, $\overline{\Sigma}^- p o \overline{\Sigma}^- p$
 ho $\Xi^- p o \Xi^- p$, $\overline{\Xi}^+ p o \overline{\Xi}^+ p$

More results will come out soon !!!

Summary

- 1. Using a novel method, hyperon-nucleon scattering can also be measured at BESIII now.
 - $\triangleright \Xi^0 n \rightarrow \Xi^- p$
 - $\triangleright \Lambda N \rightarrow \Sigma^+ X$
 - $\triangleright \Lambda p \rightarrow \Lambda p$
 - $\triangleright \overline{\Lambda}p \rightarrow \overline{\Lambda}p$
- 2. This is the first study of hyperon-nucleon scattering in electron-positron collisions, and opens up a new direction for such research. Especially, antihyperon-nucleon scattering is studied for the first time.
- 3. With more statistics in future super tau-charm facilities, the momentum-dependent cross section or differential cross section distributions can be studied based on the hyperons from multibody decays of J/ψ or other charmonia.

Thanks for your attention!