Review of lattice results on eta, eta'

Konstantin Ottnad^a

^a Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

The 11th International Workshop on Chiral Dynamics (CD2024) Ruhr University Bochum, August 26–30, 2024

Introduction ●00	η,η' on the lattice 000	Overview 00	ETMC 0000000	RQCD 000000	$P \rightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0
Introduct	ion					

Quarks cannot be observed directly but are bound in hadrons (at low energies):

- The lightest hadrons π^{\pm} , π^{0} , K^{\pm} , K^{0} , \bar{K}^{0} , η ("octet mesons") have masses from 135 MeV to 548 MeV.
- In addition there is a "flavor-singlet", the η' .
- For exact flavor symmetry $(m_u = m_d = m_s)$ all 9 mesons should have the same mass.

However: $M_{n'} \approx 958 \,\mathrm{MeV} \gg M_{octet}$

Theoretical solution to this puzzle in QCD:

• Large mass of the η' is caused by the QCD vacuum structure and the $U(1)_A$ anomaly. Weinberg (1975). Belavin et al. (1975), t'Hooft (1976), Witten (1979), Veneziano (1979)

The U(1) axial current is anomalously broken, i.e. even for m_q = 0: Adler (1969), Jackiw and Bell (1969)

$$\partial_{\mu}A^{0}_{\mu} = \frac{N_{f}g^{2}}{32\pi^{2}}G^{a}_{\mu\nu}\tilde{G}^{a,\mu\nu}\neq 0$$

- Instantons with non-trivial topology provide non-perturbative explanation. Belavin et al. (1975), t'Hooft (1976)
- The flavor-singlet η' remains massive as $m_l, m_s \rightarrow 0$.

Use lattice QCD to reproduce η' mass from first principles.

Introduction ○●○	η,η' on the lattice	Overview 00	ETMC 0000000	RQCD 000000	$P \rightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0
Introduct	ion					

For exact SU(3) flavor symmetry one expects

- Flavor octet state $|\eta_8\rangle = \frac{1}{\sqrt{6}} (|\bar{u}u\rangle + |\bar{d}d\rangle 2|\bar{s}s\rangle)$ (Pseudo-Goldstone boson)
- Flavor singlet state $|\eta_0\rangle = \frac{1}{\sqrt{3}}(|\bar{u}u\rangle + |\bar{d}d\rangle + |\bar{s}s\rangle)$ (related to $U(1)_A$ anomaly)

However, SU(3) flavor symmetry is broken by large $m_s \gg m_u \approx m_d \equiv m_l$:

• Physical η , η' states are not flavor eigenstates but **mixtures**, e.g.

$$\begin{pmatrix} |\eta\rangle\\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_0 & -\sin\theta_8\\ \sin\theta_0 & \cos\theta_8 \end{pmatrix} \begin{pmatrix} |\eta_0\rangle\\ |\eta_8\rangle \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} |\eta\rangle\\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\phi_l & -\sin\phi_s\\ \sin\phi_l & \cos\phi_s \end{pmatrix} \begin{pmatrix} |\eta_l\rangle\\ |\eta_s\rangle \end{pmatrix}$$

in the octet-singlet basis or the quark flavor basis $|\eta_l\rangle = \frac{1}{\sqrt{2}}(|\bar{u}u\rangle + |\bar{d}d\rangle), \quad |\eta_s\rangle = |\bar{s}s\rangle.$

- Additional mixing possible in the physical world, e.g. with π^0 (for $m_u \neq m_d$), η_c , ...
- Mixing parameters related to further observables, e.g. $\Gamma_{\eta,\eta'\to\gamma\gamma'}$, $\lim_{Q^2\to\infty} Q^2 F_{\eta,\eta'\to\gamma\gamma}(Q^2)$.
- Very recently: Direct LQCD calculations of $\eta, \eta' \to \gamma^* \gamma^*$ transition form factors (TFFs)

LQCD can be used to determine mixing parameters and TFFs.

Introduction 00●	η,η' on the lattice 000	Overview 00	ETMC 0000000	RQCD 000000	$P \rightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0
Outline						

- How are η , η' simulated on the lattice?
 - \rightarrow Why are these calculations particularly challenging?
- **2** Overview on LQCD studies of η, η' .
- Q Results for masses, mixing parameters, LECs and TFFs.
 → Focus on physical results with controlled systematics
- Summary and outlook

Introduction 000	η, η' on the lattice $\bullet \circ \circ$	Overview 00	ETMC 0000000	RQCD 000000	$P \rightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0
, ,						

η,η' on the lattice

Information on masses and mixing is encoded in (expectation values of) meson two-point correlation functions:

$$\mathcal{C}_{ij}(t) \sim \sum_{\mathbf{x}} \left\langle 0 \right| \left. \mathbf{O}_{i}\left(x \right) \mathbf{O}_{j}^{\dagger}\left(0 \right) \left| 0 \right\rangle$$

• For η , η' use local pseudoscalar (or axialvector) interpolating operators $O_{i,j}$, e.g.:

$$\eta_l = rac{1}{\sqrt{2}} (ar{u} i \gamma_5 u + ar{d} i \gamma_5 d), \qquad \eta_s = ar{s} i \gamma_5 s, \qquad \eta_c = ar{c} i \gamma_5 c$$

 \rightarrow Choice of basis (quark flavor, octet-singlet) relevant for mixing.

• For e.g.
$$i = j$$
: $C_{ii}(t) = \sum_{n=\eta,\eta',\dots} \frac{\left|\langle 0|O_i|n\rangle\right|^2}{2M_n} \exp\left(-M_n t\right) \stackrel{t\gg 0}{\to} \frac{\left|\langle 0|O_i|\eta\rangle\right|^2}{2M_\eta} \exp\left(-M_\eta t\right)$

 \rightarrow Ground state mass M_η can be extracted directly at sufficiently large t.

- \rightarrow Decay constants / mixing parameters related to physical amplitudes $A_i^n = \langle 0 | O_i | n \rangle$.
- Higher states (η') from solving GEVP: $C(t)v^{(n)}(t,t_0) = \lambda^{(n)}(t,t_0)C(t_0)v^{(n)}(t,t_0)$
 - \rightarrow Eigenvalues $\lambda^{(n)}(t, t_0)$ give mass of *n*-th state at $t \gg 0$.
 - \rightarrow Eigenvectors $v^{(n)}(t, t_0)$ carry information on physical amplitudes $A^{\eta, \eta'}_{l,s,...}$, $A^{\eta, \eta',...}_{8,0,...}$.
- Alternatively: Obtain masses and matrix elements from multi-state fits to C(t).

1e + 00

Quark disconnected diagrams

• Consider
$$O_i = O_j = \eta_i$$
:

$$\begin{split} \mathcal{C}_{ll}(t) &\sim \sum_{\mathbf{x}} \left< 0 \right| \eta_l(\mathbf{x}) \eta_l^{\dagger}(0) \left| 0 \right> \\ &\sim \mathrm{tr} \left[D_{0t}^{-1} \gamma_5 D_{t0}^{-1} \gamma_5 \right] - \mathrm{tr} \left[D_{tt}^{-1} \gamma_5 \right] \mathrm{tr} \left[D_{00}^{-1} \gamma_5 \right] \end{split}$$

Quark-connected and -disconnected pieces:

- Lattice Dirac operator D_{xy} is a very large (3 · 4 · L³ · T) × (3 · 4 · L³ · T) matrix
- Mixing mediated by quark-disconnected diagrams only, i.e. through C_{ls,sl}(t)

- ll connected 1e-01ss connected 1e-02 1e-03 (1) 1e-04 70 1e-05 1e-061e-071e-081e-09 2 3 t/fm0.02*ll* disconnected ls disconnected ss disconnected -0.015 0.01 $\mathcal{I}_{\mathrm{disc}}^{H,ss}(t)$ 0.00 -0.0053 t/fm
 - Quark-connected and disconnected correlators; tmWilson+Clover, $M_{\pi}=139\,{
 m MeV},~a=0.080\,{
 m fm}$
- Disconnected diagrams need all-to-all propagator $D_{xx}^{-1} \Rightarrow$ prohibitively expensive
- Use stochastic method instead (+ e.g. one-end trick)

Quark disconnected diagrams

• Consider
$$O_i = O_j = \eta_i$$
:

$$\begin{split} \mathcal{C}_{ll}(t) &\sim \sum_{\mathbf{x}} \left< 0 \right| \eta_l(\mathbf{x}) \eta_l^{\dagger}(0) \left| 0 \right> \\ &\sim \mathrm{tr} \left[D_{0t}^{-1} \gamma_5 D_{t0}^{-1} \gamma_5 \right] - \mathrm{tr} \left[D_{tt}^{-1} \gamma_5 \right] \mathrm{tr} \left[D_{00}^{-1} \gamma_5 \right] \end{split}$$

Quark-connected and -disconnected pieces:

- Lattice Dirac operator D_{xy} is a very large (3 · 4 · L³ · T) × (3 · 4 · L³ · T) matrix
- Mixing mediated by quark-disconnected diagrams only, i.e. through C_{ls,sl}(t)

Quark-connected vs. full correlators; tmWilson+Clover, $M_{\pi}=139\,{
m MeV},~a=0.080\,{
m fm}$

 \rightarrow Very severe signal-to-noise problem; signal lost at $t \gtrsim 1 \, {
m fm}$ even for η

 \rightarrow Computations always limited by gauge statistics; careful analysis required.

Introduction 000	η,η' on the lattice	Overview 00	ETMC 0000000	RQCD 000000	$P ightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0	
Obtaining physical results							

- Fix bare parameters (a, m₁, m_s,...):
 - Use known hadronic quantities (e.g. M_{π}^{phys} , M_{K}^{phys} , ...) \rightarrow Further observables are predictions.

• Control discretization effects:

- Simulate at different (small) values of a.
- Perform continuum extrapolation.
- With modern LQCD calculations lattice artifacts are typically $\propto a^2$.
- Correct for unphysical quark masses:
 - Simulate at several light and strange quark masses, or tune $m_s = m_s^{\rm phys}$
 - Perform chiral extrapolation.
 - State-of-the-art lattice simulations include physical quark masses.
 - Can determine LECs from fits to unphysical masses.

• Control finite volume effects:

- Simulate several physical volumes.
- Perform infinite volume extrapolation / make sure that FS effects are negligible $M_{\pi}L \gtrsim 4$.

Introduction η, η' on the latticeOverviewETMCRQCD $P \rightarrow \gamma \gamma$ TFFsSummary & Outlook000000000000000000000000000

 $_{0}M_{\eta_{0}}$

Overview of $N_f = 2$ studies

- Mostly older studies; spread over 2-3 decades, often unclear systematics:
 - ightarrow typically $\mathcal{O}(1)$ ensembles
 - \rightarrow no continuum and / or chiral limit
 - \rightarrow no scale setting available \ldots
- No direct correpondence to the physical world; no mixing, only a single "η₀"
- Overall agreement for M_{η_0} good; little M_{π} -dependence.
- $m_l^{\rm phys}$ reached in 2019 by ETMC.

Confirmed $M_{\eta_0} \neq 0$ in chiral limit.

• Further applications: tests of $N_f = 2$ Veneziano-Witten formula, glueball mixing, $\eta_c \rightarrow \gamma\gamma$, $J/\psi \rightarrow \eta_0\gamma$... e.g. Dimogenulos et al., PRD 101 ...

Jiang et al., PRD 107, 094510 (2023) Jiang et al., PRL 130, 061901 (2023)

Figure reproduced from PRD 99, 034511 (2019). $\mathit{N_{f}}$ = 2 data from:

ETMC:	PRD 99, 034511 (2019)
ETMC:	Eur. Phys. J. C 58, 261 (2008)
CP-PACS:	PRD 67, 074503 (2003)
DWF:	Prog. Theor. Phys. 119, 599 (2008)
UKQCD:	PRD 70, 014501 (2004)
CLQCD:	Chin. Phys. C 42, 093103 (2018)

(even older studies exist)

 \rightarrow N_f = 2 flavor singlet studies should be considered a closed chapter.

 $\begin{array}{c|cccc} \text{Introduction} & \eta, \eta' \text{ on the lattice} & \hline \text{Overview} & \text{ETMC} & \text{RQCD} & P \to \gamma\gamma & \text{TFFs} & \text{Summary & Outlook} \\ \hline 000 & 000 & 000000 & 000000 & 00000 & 0 \\ \hline \end{array}$

Overview of $N_f = 2+1$ and $N_f = 2+1+1$ studies

Lattice calculations including dynamical strange quarks exist since \lesssim 15 years:

- Several older studies (e.g. single / few ensembles, no phys. extrapolation, large uncertainties ...)
 Dudek et al., PRD 83, 11502 (2011) Ottmad et al., NPR 96 074-952 (2015)
 Gregory et al., PRD 90, 10450 (2015)
 Mait et al., PRD 91, 01450 (2015)
 Mait et al., PRD 91, 01450 (2015)
- UKQCD 2010: Early attempt of a chiral extrapolation on three DWF ensembles. Christ et al., PRL 105, 241601 (2010)
- ETMC 2013-2023: First physical results for $M_{\eta,\eta'}$, ϕ and $f_{1,s}$, VW formula, $\eta \rightarrow \gamma\gamma$ TFF Michael et al., PRL 111, 181602 (2013) Gichy et al., JHEP 09 (2015) 020 Otmad et al., PRD 97, 054508 (2018) Alexandrou et al., PRD 108, 054509 (2023) \rightarrow Update including several ensembles at physical quark mass: work in progress
- RQCD 2021: Physical results for masses + mixing parameters on CLS ensembles Ball et al., JHEP 08 (2021) 137 \rightarrow Axialvector + gluonic matrix elements, scale dependence, determination of NLO U(3) χ PT LECs
- BMW 2023/???: Physical results for $\eta, \eta' \rightarrow \gamma \gamma$ TFFs on staggered ensembles Gerardin et al., arXiv:2305.04570 \rightarrow Planned publication on masses / mixing (not yet available); cf. remark in arXiv:2305.04570
- CSSM/QCDSF/UKQCD 2021: First, very exploratory QCD+QED study Kordov et al., PRD 104, 114514 (2021)

Introduction 000	η,η' on the lattice	Overview ○●	ETMC 0000000	RQCD 000000	$P ightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0
_						

Overview of $N_f = 2 + 1$ and $N_f = 2 + 1 + 1$ studies

Lattice calculations including dynamical strange quarks exist since $\lesssim 15$ years:

Several older studies (e.g. single / few ensembles, no phys. extrapolation, large uncertainties ...)
 Dudøk et al., PRB 08, 115502 (2011)
 Oftmad et al., NPE 08 074-052 (2015)
 Bali et al., PRD 91, 014503 (2015)
 Fikaya et al., PRD 92, 014503 (2015)

UKQCD 2010: Early attempt of a chiral extrapolation on three DWF ensembles. Christ et al., PRL 105, 241601 (2010)

- ETMC 2013-2023: First physical results for $M_{\eta, \eta'}$, ϕ and $f_{l,s}$, VW formula, $\eta \rightarrow \gamma \gamma$ TFF Michael et al., PRL 111, 181602 (2013) Cichy et al., JHEP 09 (2015) 020 Ottnad et al., PRD 97, 054508 (2018) Alexandrou et al., PRD 108, 054509 (2023) \rightarrow Update including several ensembles at physical quark mass: work in progress
- RQCD 2021: Physical results for masses + mixing parameters on CLS ensembles Bali et al., JHEP 08 (2021) 137 \rightarrow Axialvector + gluonic matrix elements, scale dependence, determination of NLO U(3) χ PT LECs
- BMW 2023/???: Physical results for $\eta, \eta' \rightarrow \gamma \gamma$ TFFs on staggered ensembles Gerardin et al., arXiv:2305.04570 \rightarrow Planned publication on masses / mixing (not yet available); cf. remark in arXiv:2305.04570
- CSSM/QCDSF/UKQCD 2021: First, very exploratory QCD+QED study Kordov et al., PRD 104, 114514 (2021)

\rightarrow Remaining talk: Studies with physical results.

 $\begin{array}{cccc} \text{Introduction} & \eta, \eta' \text{ on the lattice} & \text{Overview} & \text{ETMC} & \text{RQCD} & P \rightarrow \gamma\gamma \text{ TFFs} & \text{Summary \& Outlook} \\ \text{oo} & \text{oo} & \text{oo} & \text{oo} & \text{oo} & \text{oo} \\ \end{array}$

ETMC '18: Setup and masses

Ottnad et al., PRD 97, 054508 (2018)

- 17 ensembles with $N_f = 2+1+1$ flavors of Wilson twisted-mass quarks generated by ETMC.
- $M_{\pi} \in [220, ..., 490]$ MeV, $a \in [0.061, 0.081, 0.089]$ fm.
- Automatic O(a) improvement.
- Ansatz for phys. extrapolations $(P = \eta, \eta')$:

$$(r_0 M_P)^2 = (r_0 \mathring{M}_P)^2 + \sum_{i=\pi,K} c_i (r_0 M_i)^2 + c_\beta \left(\frac{a}{r_0}\right)^2$$

- Scale setting: Sommer parameter r₀ = 0.474(14) fm. Carrasco et al., NPB 887 (2014) 19-68
- Results in good agreement with experiment.
- Results for $M_{\eta,\eta'}$ also agree with 2013 analysis. Michael et al. PRL 111, 181602 (2013)

•
$$M_{\eta,\eta'}$$
 used as input for VW formula test:
 $\chi_{\infty}^{\text{YM}} = (185.3(5.6)_{\text{stat+sys}} \,\text{MeV})^4$ vs. $\chi_{\infty}^{\text{dyn}} = (182.6(8.3)_{\text{stat+sys}} \,\text{MeV})^4$

Physical results:

$$\begin{array}{l} M_{\eta} \ = 557(11)_{\rm stat}(03)_{\chi PT}\,{\rm MeV} \\ \\ M_{\eta'} = 911(64)_{\rm stat}(03)_{\chi PT}\,{\rm MeV} \end{array}$$

4

Cichy et al., JHEP 09 (2015) 020, Ottnad, PoS CD2018 (2019) 077

Excellent agreement with pheno results, e.g. $\phi^{
m pheno}=39.3^{\circ}(1.0)$. Feldmann, Int. J. Mod. Phys. A15 (2000) 159-207

First ever lattice results for η, η' decay constant parameters:

 $\begin{array}{ll} (f_{l}/f_{\pi})_{\rm phys} = 0.960(37)_{\rm stat}(46)_{\chi PT} & \rightarrow & f_{l,\,\rm phys} = 125(5)_{\rm stat}(6)_{\chi PT} \,\, {\rm MeV} \\ (f_{s}/f_{\rm K})_{\rm phys} = 1.143(23)_{\rm stat}(04)_{\chi PT} & \rightarrow & f_{s,\,\rm phys} = 178(4)_{\rm stat}(1)_{\chi PT} \,\, {\rm MeV} \end{array}$

 χ PT relates ϕ , f_l , f_s to decay widths and large- Q^2 behavior of TFFs:

$$\begin{split} \Gamma_{\eta \to \gamma\gamma} &= \frac{\alpha_{\rm QED}^2 M_{\eta}^3}{288\pi^3} \cdot \left[\frac{5\cos\phi}{f_l} - \frac{\sqrt{2}\sin\phi}{f_{\rm s}} \right]^2 \,, \qquad \hat{F}_{\eta\gamma\gamma^*} \equiv \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma\gamma^*}(Q^2) = \frac{\sqrt{2}}{3} \cdot \left[5f_l\cos\phi - \sqrt{2}f_{\rm s}\sin\phi \right] \,, \\ \Gamma_{\eta' \to \gamma\gamma} &= \frac{\alpha_{\rm QED}^2 M_{\eta'}^3}{288\pi^3} \cdot \left[\frac{5\sin\phi}{f_l} + \frac{\sqrt{2}\cos\phi}{f_{\rm s}} \right]^2 \,, \qquad \hat{F}_{\eta\gamma\gamma^*} \equiv \lim_{Q^2 \to \infty} Q^2 F_{\eta'\gamma\gamma^*}(Q^2) = \frac{\sqrt{2}}{3} \cdot \left[5f_l\sin\phi + \sqrt{2}f_{\rm s}\cos\phi \right] \,. \\ \left[\Gamma_{\eta \to \gamma\gamma} = 0.71(9)_{\rm stat}(7)_{\chi PT} \, {\rm keV} \,, \qquad \hat{F}_{\eta\gamma\gamma^*} = 155(14)_{\rm stat}(23)_{\chi PT} \, {\rm MeV} \,, \end{split}$$

 $\begin{array}{ll} \Gamma_{\eta\to\gamma\gamma} &= 0.71(9)_{\rm stat}(7)_{\chi PT}\,{\rm keV}\,, & F_{\eta\gamma\gamma^*} &= 155(14)_{\rm stat}(23)_{\chi PT}\,{\rm MeV}\,, \\ \Gamma_{\eta'\to\gamma\gamma} &= 4.4(1.3)_{\rm stat}(0.6)_{\chi PT}\,{\rm keV}\,, & \hat{F}_{\eta'\gamma\gamma^*} &= 277(09)_{\rm stat}(01)_{\chi PT}\,{\rm MeV}\,. \end{array}$

Decay widths in reasonably good agreement with PDG values.

• However: Scale dependence neglected; potential issue for $\hat{F}_{\eta'\gamma\gamma^*}$, $\hat{F}_{\eta\gamma\gamma^*}$

ETMC '24 (preliminary): Setup

- 15 ensembles with $N_f = 2 + 1 + 1$ twisted mass Wilson+Clover quarks.
- $M_{\pi} \in [138, ..., 350]$ MeV, physical m_s^{sea}
- 3 ensembles at $m_{ls}^{\rm phys}$, 6 with $M_{\pi} < 200 \,{\rm MeV}$.
- Fits dominated by ensembles at $m_{ls}^{\rm phys}$
- Four values of *a* ∈ [0.057,...,0.092] fm.
- Osterwalder-Seiler discretization for valence strange quarks. Osterwalder et al., Annals Phys. 110 (1978) 440
- Use three choices for µ_s^{val}-matching
 → different approach to the continuum
- Fully controlled systematics / error budget; separation of stat and sys. errors from model averaging.
- O(100) model variations per observable

 $\{\mu_s\text{-matchings}\}\bigotimes\{\text{CCF models}\}\bigotimes\{\text{data cuts}\}$

ETMC '24 (preliminary): Masses

- Excellent agreement with experiment $(M_{\eta}^{exp} = 547.862(17) \text{ MeV}, M_{\eta'}^{exp} = 957.78(6) \text{ MeV}).$
- Error on M'_n improved by factor ~ 3 compared to our previous results

 $M_{\eta} = 557(11)_{\rm stat}(03)_{\chi PT} \ {\rm MeV}, \quad M_{\eta'} = 911(64)_{\rm stat}(03)_{\chi PT} \ {\rm MeV}$

- Improved control over systematic effects (chiral + continuum + FS).
- Scale setting: $\sqrt{t_0^{\rm phys}} = 0.14436(61)\,{\rm fm}.$ Alexandrou et al., PRD 104 (2021) 7, 074520

ETMC '24 (preliminary): Mixing

- Δφ improved by factor ~ 1.5 compared to old result φ = 38.8(2.2)_{stat}(2.4)^o_{χPT}.
- Value for \u03c6 in excellent agreement with pheno determinations, e.g.

	ϕ_I	ϕ_s	
R. Escribano et al. (2016)	39.6(2.3)°	$40.8(1.8)^{\circ}$	PRD 94 (2016), 054033
R. Escribano et al. (2015)	39.3(1.2)°	39.2(1.2)°	EPJC 75, 414 (2015)
Th. Feldmann (2000)	39.3(1.0)°	$39.3(1.0)^{\circ}$	Int. J. Mod. Phys. A 15 (2000)

• Compatible with RQCD $\phi_l(\mu = 2 \text{ GeV}) = 36.2 \binom{1.1}{2.0}_{\text{stat}} \binom{1.3}{0.4}_{\text{sys}}^{\circ}$ and $\phi_s(\mu = 2 \text{ GeV}) = 37.9 \binom{1.9}{1.3}_{\text{stat}} \binom{1.40}{0.8}_{\text{sys}}^{\circ}$, although scale dependence is neglected in FKS scheme. Bali et al., JHEP 08 (2021) 137

0.2

0.14

Physical results:

 $N_{\rm dof} = 1.99, p = 0.06$

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.08

0.06

 $f_l = 138.3(4.0)_{\text{stat}}(1.8)_{\text{sys}}[4.4]_{\text{total}} \text{ MeV}, \quad f_s = 170.7(3.2)_{\text{stat}}(1.2)_{\text{sys}}[3.3]_{\text{total}} \text{ MeV}$

0.16

0.17

 f_{*}/GeV

0.15

total error

stat. error

CDF

0.19

phys. value

0.18

- - 0.2

- 0

0.2

f_l increased, f_s decreased compared to 2018 analysis, i.e.

 $(M_{\pi}/{\rm GeV})^2$

 $f_l = 125(5)_{\text{stat}}(6)_{\chi PT} \text{ MeV}, \quad f_s = 178(4)_{\text{stat}}(1)_{\chi PT} \text{ MeV}$

Improved control over systematic effects of physical extrapolations; particularly for fi.

physical results

corrected lattice data +++++

fits $(a=0, m_s=m_s^{\text{phys}}, M_{\pi}L=\infty)$

original lattice data

• Physical extrapolation of ratios: $f_l/f_{\pi} = 1.057(28)_{\text{stat}}(27)_{\text{sys}}$ and $f_s/f_{\kappa} = 1.105(20)_{\text{stat}}(13)_{\text{sys}}$

 $\Rightarrow f_l = 137.6(3.6)_{\text{stat}}(3.5)_{\text{sys}} \text{ MeV}, \quad f_s = 172.0(3.1)_{\text{stat}}(2.3)_{\text{sys}} \text{ MeV}$

Physical results:

0.06

 $N_{dof} = 1.99, p = 0.06$

0.02 0.04 0.06 0.08 0.1 0.12 0.14

 $f_l = 138.3(4.0)_{\text{stat}}(1.8)_{\text{sys}}[4.4]_{\text{total}} \text{ MeV}, \quad f_s = 170.7(3.2)_{\text{stat}}(1.2)_{\text{sys}}[3.3]_{\text{total}} \text{ MeV}$

0.15

0.16

0.17

 f_{*}/GeV

• Errors on f_s quite competitive; new analysis in better agreement with pheno results for f_l , e.g.

	f_l	f_s	
R. Escribano et al. (2016)	134.2(5.2) MeV	177.2(5.2) MeV	PRD 94 (2016), 054033
R. Escribano et al. (2015)	139.6(12.7) MeV	181.0(18.3) MeV	EPJC 75, 414 (2015)
Th. Feldmann (2000)	139.3(2.5) MeV	$174.5(7.8){ m MeV}$	Int. J. Mod. Phys. A 15 (2000)

0.14

RQCD results at µ = 2 GeV shows tension for f_l, but good agreement for f_s:

original lattice data

fits $(a=0, m_s=m_s^{\text{phys}}, M_{\pi}L=\infty)$

 $(M_{\pi}/{\rm GeV})^2$

 $f_l = 124.9 \left({}^{1.7}_{2.9} \right)_{\rm stat} \left({}^{4.2}_{2.5} \right)_{\rm sys} (1.6)_{t_0} \, {\rm MeV}, \quad f_s = 175.8 \left({}^{2.4}_{2.3} \right)_{\rm stat} \left({}^{3.8}_{6.1} \right)_{\rm sys} (2.3)_{t_0} \, {\rm MeV}$

Bali et al., JHEP 08 (2021) 137

phys. value

0.18

CDF

0.19

- 0

0.2

- 21 ensembles with $N_f = 2 + 1$ Wilson-Clover quarks generated by CLS.
- Two quark mass trajectories, i.e. tr[M] = const and m_s ≈ m_s^{phys}
- $M_{\pi} \in [135...420] \, \mathrm{MeV}$
- Four lattice spacings $a \in [0.050...0.086]$ fm
- Computation of axialvector matrix elements: $\langle 0 | A^i_{\mu} | P \rangle = i F^i_P p_{\mu}, \quad P = \eta, \eta', \quad i = 0, 8$ \rightarrow direct extraction of $F_{0,8} \; \theta_{0,8} \; (f_{l,s}, \; \phi_{l,s})$
- Phys. extrapolation using NLO large- $N_c \chi PT$. \rightarrow determination of LECs, i.e. F, M_0 , $L_{5.8}$, $\Lambda_{1.2}$
- Study of scale dependence.
- Gluonic matrix elements $a_P(\mu) = \langle 0|2\omega|P \rangle$, $P = \eta, \eta'$ from singlet axial Ward identity (AWI).

Introduction 000	η,η' on the lattice 000	Overview 00	ETMC 0000000	RQCD o●oooo	$P \rightarrow \gamma \gamma$ TFFs 00000	Summary & Outlook 0
RQCD '2	1: Physical ext		Bali et al., JHEP 08 (2021) 137			
Physical extra	polation using NLO la	arge- $N_c \ \chi$ PT			LO expressions:	
$(\mu_8^{\rm NLO})^2 = (\mu_8^{\rm L})^2$	$\left(\frac{1}{2}\right)^{2} + \frac{8}{3F^{2}}\left(2L_{8} - L_{5}\right)\delta$	<i>M</i> ⁴ ,			$(\mu_8^{\rm LO})^2 = \overline{M}^2 + \frac{1}{3}$	δM^2 ,
$(\mu_0^{\rm NLO})^2 = (\mu_0^{\rm L})^2$	$\left(\frac{1}{2}\right)^{2} + \frac{4}{3E^{2}}\left(2L_{8} - L_{5}\right)\delta$	$M^4 - \frac{8}{F^2} L_5 \overline{N}$	$\overline{d}^2 M_0^2 - \overline{\Lambda} \overline{M}^2 - \Lambda$	$_{1}M_{0}^{2}$,	$(\mu_0^{\rm LO})^2 = \overline{M}^2 + M_0^2$	2,0,
$(\mu_{80}^{\rm NLO})^2 = (\mu_8^{\rm L})^2$	$(40)^2 - \frac{4\sqrt{2}}{25^2}(2L_8 - L_5)$	$\delta M^4 + \frac{4\sqrt{2}}{2\Gamma^2}L$	$_{5}M_{0}^{2}\delta M^{2}+\frac{\sqrt{2}}{\epsilon}\tilde{\Lambda}$	δM^2 ,	$(\mu_{80}^{\rm LO})^2 = -\frac{\sqrt{2}}{3}\delta l$	M ² ,
$F_{\eta}^{8} = F \left[c \right]$	$\frac{3F^2}{\cos\theta} + \frac{4L_5}{3F^2} \left(3\cos\theta \overline{M}^2 + \right)$	$(\sqrt{2}\sin\theta + \cos\theta)$	$\left[\cos \theta \right] \delta M^2 \Big],$	wł	$ heta=rac{1}{2}\arctan$	$\left(\frac{-2\sqrt{2}\delta M^2}{3M_0^2-\delta M^2}\right),$
5 ⁸ - 5	$\frac{4L_5}{4L_5}$	$(\sin \theta) = \sqrt{2} \cos \theta$	د (مردم) (مردم)		$\overline{M}^2 = \frac{2}{3}(2n)$	m_l+m_s),

$$\begin{split} F_{\eta'}^8 &= F \left[\sin\theta + \frac{4L_5}{3F^2} \left(3\sin\theta \overline{M}^2 + (\sin\theta - \sqrt{2}\cos\theta)\delta M^2 \right) \right], \\ F_{\eta}^0 &= -F \left[\sin\theta \left(1 + \frac{\Lambda_1}{2} \right) + \frac{4L_5}{3F^2} \left(3\sin\theta \overline{M}^2 + \sqrt{2}\cos\theta\delta M^2 \right) \right], \\ F_{\eta'}^0 &= F \left[\cos\theta \left(1 + \frac{\Lambda_1}{2} \right) + \frac{4L_5}{3F^2} \left(3\cos\theta \overline{M}^2 - \sqrt{2}\sin\theta\delta M^2 \right) \right], \\ \tilde{\Lambda} &= \Lambda_1 (L_i \text{ are d} L_i \text{ are d}$$

 $\tilde{\Lambda} = \Lambda_1(\mu) - 2\Lambda_2(\mu)$ is scale independent. L_i are different from SU(3) LECs!

$$\begin{split} \delta M^2 &= 2B_0(m_s - m_l)\,, \\ M_0^2 &= M_0^2(\mu) = \frac{2N_f}{F_-^2}\,\chi_t\,. \end{split}$$

- Masses and matrix elements share same LECs F, M_0 (LO), L_5 , L_8 , $\Lambda_1(\mu)$, $\Lambda_2(\mu)$ (NLO)
- Simultanous fits for masses $M_{\eta,\eta'}$ and matrix elements $F_{\eta,\eta'}^{0,8}$.
- Complemented by terms for lattice artifacts

RQCD '21: Masses and mixing parameters

Bali et al., JHEP 08 (2021) 137

Physical results:

$$\begin{split} M_\eta &= 554.7 ^{(4.0)}_{6.6} {}_{\rm stat} \begin{pmatrix} 2.4 \\ 2.7 \end{pmatrix}_{\rm sys} (7.0)_{t_0} [9.2]_{\rm total} \, {\rm MeV} \\ M_{\eta'} &= 929.9 ^{(12.9)}_{6.0} {}_{\rm stat} \begin{pmatrix} 22.9 \\ 3.3 \end{pmatrix}_{\rm sys} (11.7)_{t_0} [21]_{\rm total} \, {\rm MeV} \end{split}$$

$$\begin{split} \mathcal{F}^8 &= 115.0 \left({}^{1.1}_{1.2} \right)_{\rm stat} \left({}^{1.6}_{2.4} \right)_{\rm sys} (1.5)_{t_0} [2.8]_{\rm total} \, {\rm MeV} \qquad \theta_8 &= -25.8 \left({}^{1.2}_{2.1} \right)_{\rm stat} \left({}^{2.3}_{0.5} \right)_{\rm sys} [2.3]^\circ_{\rm total} \\ \mathcal{F}^0 (\mu \!=\! 2 \, {\rm GeV}) &= 110.1 \left({}^{7.0}_{1.0} \right)_{\rm stat} \left({}^{2.9}_{2.0} \right)_{\rm sys} (1.3)_{t_0} [3.0]_{\rm total} \, {\rm MeV} \qquad \theta_0 &= -8.1 \left({}^{1.5}_{1.1} \right)_{\rm stat} \left({}^{1.5}_{1.5} \right)_{\rm sys} [1.8]^\circ_{\rm total} \\ \end{split}$$

- Masses in agreement with experiment.
- First direct determination of mixing parameters including scale dependence also in quark flavor basis.
- Systematic errors from spread of various fit variations, data cuts ...
- However: $\chi^2 / N_{dof} = 179/122 = 1.47$ of best fit still gives p < 0.001.

Results for LECs:

 μ [GeV]

$$\begin{split} M_{0}(\mu = \infty) &= 761 \binom{13}{21}_{\text{stat}} \binom{18}{11}_{\text{sys}} (11)_{t_{0}} [27]_{\text{total}} \, \text{MeV} \\ \Lambda_{1}(\mu = \infty) &= -0.25 \binom{1}{3}_{\text{stat}} \binom{9}{2}_{\text{sys}} [5]_{\text{total}} \\ \Lambda_{2}(\mu = \infty) &= +0.11 \binom{9}{5}_{\text{stat}} \binom{7}{10}_{\text{sys}} [10]_{\text{total}} \\ L_{8} &= +1.08(09)_{\text{stat}} (09)_{\text{sys}} [13]_{\text{total}} \times 10^{-3} \\ \end{split}$$

 μ [GeV]

- Results agree reasonably well with pheno determinations.
 Leutwyler, NPB Proc. Suppl. 64 (1998) 223 Benayoun et al., EPJ C 17 (2000) 593 Guo et al., JHEP 06 (2015) 175 Bickert et al., PRD 95, 054023 (2017)
- Results for scale-invariant combinations: $M_0/\sqrt{1+\Lambda_1} = 877 {\binom{12}{10}}_{\text{stat}} {\binom{21}{8}}_{\text{sys}} (13)_{t_0} \, \text{MeV}$ and $\tilde{\Lambda} = -0.46(19)$.
- Test of Feldmann-Kroll-Stech scheme: Valid if $\Lambda_1(\mu)$ is small, i.e. for $0.8 \text{ GeV} \lesssim \mu \lesssim 1.5 \text{ GeV}$.

 μ [GeV]

RQCD '21: Gluonic matrix elements

Renormalized gluonic matrix elements $a_P(\mu) = \langle 0 | \omega | P \rangle$ via singlet AWI:

$$\partial_{\mu}A^{0}_{\mu}=rac{2}{3}\left(2m_{l}+m_{s}
ight)P^{0}-rac{2\sqrt{2}}{3}(m_{s}-m_{l})P^{8}+\sqrt{6}\omega$$

from axialvector MEs F_P^0 and pseudoscalar MEs $H_P^{0,8}$ ($P = \eta, \eta'$):

$$a_{P}(\mu) = \sqrt{\frac{2}{3}} \left(M_{P}^{2} F_{P}^{0}(\mu) + \frac{2\sqrt{2}}{3} (m_{s} - m_{l}) H_{P}^{8} - \frac{2}{3} (2m_{l} + m_{s}) H_{P}^{0} \right)$$

Physical results:

 $\begin{array}{l} a_{\eta} \ (\mu = 2 \, {\rm GeV}) = 0.01700 \left(\begin{smallmatrix} 40 \\ 69 \end{smallmatrix} \right)_{\rm stat} (48)_{\rm sys} (66)_{t_0} \, {\rm GeV}^3 \\ a_{\eta'}(\mu = 2 \, {\rm GeV}) = 0.0381 \ \left(\begin{smallmatrix} 8 \\ 17 \end{smallmatrix} \right)_{\rm stat} (80)_{\rm sys} (17)_{t_0} \, {\rm GeV}^3 \end{array}$

• Mixing angle
$$\theta_y = \arctan \frac{a_{\eta}}{a_{\eta'}} = -24.0 \left(\begin{smallmatrix} 4.0\\ 1.0 \end{smallmatrix} \right)_{\text{stat}} (3.2)_{\text{sys}}^{\circ}.$$

• Branching ratio for
$$J/\psi \to \eta^{(\prime)}\gamma$$
:

$$R(J/\psi) = \frac{\Gamma[J/\psi \to \eta' \gamma]}{\Gamma[J/\psi \to \eta\gamma} \approx \frac{a^2}{a^2_{\eta'}} \cdot \left(\frac{k_{\eta'}}{k_{\eta}}\right)^3$$

(assuming anomaly dominates)

At $\mu = 2 \,\text{GeV}$: $R(J/\psi) = 5.03 {\binom{19}{45}}_{\text{stat}} (1.94)_{\text{sys}}$ in agreement with PDG value $R(J/\psi) = 4.74(13)$.

NPB 165 (1980) 55-66

Bali et al., JHEP 08 (2021) 137

RQCD '21: TFFs at large- Q^2

Bali et al., JHEP 08 (2021) 137

Using results for matrix elements as input for

$$\begin{split} \hat{F}_{P\gamma\gamma^*} &\equiv \lim_{Q^2 \to \infty} F_P = \frac{2}{\sqrt{3}} \left(F_P^8 + 2\sqrt{2} F_P^0 (N_f = 4, \mu = \infty) \right) \,, \qquad P = \eta, \eta' \\ \\ &\hat{F}_{\eta\gamma\gamma^*} = 160.5(10.0) \,\mathrm{MeV} \,, \qquad \hat{F}_{\eta'\gamma\gamma^*} = 230.5(10.1) \,\mathrm{MeV} \end{split}$$

Bands from evaluating QCD predictions (disp. rel. + LCSRs) using lattice results. Agave et al., PRD 90, 074019 (2014)

- Reasonable agreement with existing experimental data.
- Agreement for $\hat{F}_{\eta\gamma\gamma^*}$ with ETMC '18 result $(\hat{F}_{\eta\gamma\gamma^*} = 155(14)_{\text{stat}}(23)_{\chi PT} \text{ MeV}).$
- Effect of scale dependence enhanced in \(\hat{F}_{\(\eta\)'\(\gamma\)\)^*}\).

 $P \rightarrow \gamma \gamma$ TFFs Summary & Outlook Introduction η, η' on the lattice 00000 $P \rightarrow \gamma \gamma$ transition formfactors $P = \pi_0, \eta, \eta'$ transition formfactors contribute to the LO HLbL scattering in the muon anomalous magnetic moment. TFF is related to Euclidean P-to-vacuum transition amplitude: Ji et al., PRL 86, 208 (2001) $ilde{\mathcal{A}}_{\mu
u}(au)\equiv \int d^3\mathbf{x} e^{-i\mathbf{q}_1\cdot\mathbf{x}} \left<0\right| T\{j_{\mu}(au,\mathbf{x})j_{
u}(0)\}\left|P(\mathbf{p})\right>$

via $\epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{P \to \gamma^* \gamma^*}(q_1^2, q_2^2) = -i^{n_0} \int_{0}^{\infty} d\tau e^{\omega_1 \tau} \tilde{\mathcal{A}}_{\mu\nu}^{P}(\tau),$

On the lattice: Need to compute three-point functions

$$C_{\mu\nu}(\tau,t_{\eta}) \equiv \int d^{3}\mathbf{x} d^{3}\mathbf{y} e^{-i\mathbf{q}_{1}\cdot\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{y}} T\{j_{\mu}(\tau,\mathbf{x})j_{\nu}(0)\mathcal{O}_{\eta}^{\dagger}(-t_{\eta},\mathbf{y})\}$$

- $j_{\mu,\nu}$ el-mag. currents; \mathcal{O}_{η} interpolating operator(s)
- η (groundstate): $\tilde{A}_{\mu\nu}(\tau) = \lim_{\tau \to \infty} \frac{2E_{\eta}}{Z_{\eta}} e^{E_{\eta}t_{\eta}} C_{\mu\nu}(\tau, t_{\eta})$
- η' needs state projection (GEVP \rightarrow eigenvectors)

Signal2noise problem: only fairly small values of $t_{\eta,\eta'} \lesssim 1 \, \text{fm}$ accessible (unlike for π^0).

ETMC '23: $\eta \rightarrow \gamma \gamma$ TFF

Alexandrou et al., PRD 108, 054509 (2023)

- Study of $\mathcal{F}_{\eta \to \gamma^* \gamma^*}(Q_1^2, Q_2^2)$ on a physical quark mass ensemble ($a = 0.080 \, \text{fm}$) with $N_f = 2 + 1 + 1 \, \text{tmWilson+Clover quarks}$.
- Parametrization of TFF by z-expansion Gerardin et al., PRD 100, 034520 (2019)

$$\mathcal{F}_{\eta \to \gamma^* \gamma^*}^{(z = \exp, N)}(-Q_1^2, -Q_2^2) = \left(1 + \frac{Q_1^2 + Q_2^2}{M_V^2}\right)^{-1} \sum_{n,m=0}^{N \leq 2} c_{nm} \left(z_1^n - (-1)^{N+n+1} \frac{n}{N+1} z_1^{N+1}\right) \left(z_2^m - (-1)^{N+m+1} \frac{m}{N+1} z_2^{N+1}\right)$$

Results for single-virtual TFF in agreement with experimental data
 CELLO: Behrend et al., Z. Phys. C4 9, 401 (1991)
 CLEO: Gronberg et al., PRD 57, 33 (1998)
 BABAR: Aubert et al., PRD 80, 052002 (2009)
 and Canterbury approximant estimate
 Maiguan et al., PRD 95, 054026 (2017)

• However, some tension at the $\sim 2\sigma$ level at small Q^2 .

 $\text{Result for decay width } \Gamma(P \to \gamma \gamma) = \frac{\pi \alpha_{\text{em}}^2 m_P^3}{4} |\mathcal{F}_{P \to \gamma \gamma}(0,0)|^2; \quad \boxed{\Gamma(P \to \gamma \gamma) = 338(87)_{\text{stat}}(17)_{\text{sys}}[88]_{\text{total}} \text{eV}}$

Result for pole contribution to a_{μ}^{HLbL} :

 $a_{\mu}^{\mathrm{HLbL},\,\eta} = 13.8(5.2)_{\mathrm{stat}}(1.5)_{\mathrm{sys}}[5.5]_{\mathrm{total}} imes 10^{-11}$

- Systematic errors estimated from fit variations (z-expansion, tail fits)
- Some residual dependence on time-seapration t_η.
- Continuum limit, η': work in progress...

- Study of $\mathcal{F}_{\pi_0,\eta,\eta' \to \gamma^* \gamma^*}(Q_1^2,Q_2^2)$ with $N_f = 2 + 1 + 1$ stout-smeared staggered quarks.
- (Near-)physical quark masses, six values of $a \in [0.064...0.132]$ fm, L = 3, 4, 6 fm.
- State-projection for transition amplitude $\widetilde{A}^{P}_{\mu\nu}(\tau) = \sum_{\mathbf{x}} \langle 0|J_{\mu}(\mathbf{x},\tau)J_{\nu}(\mathbf{0},0)|n(\mathbf{p})\rangle e^{-i\mathbf{q}_{1}\cdot\mathbf{x}}$

$$\widetilde{A}^{\eta}_{\mu\nu} = \cos^2 \phi \ \frac{C^8_{\mu\nu}}{T^8_{\eta}} + \sin^2 \phi \ \frac{C^0_{\mu\nu}}{T^0_{\eta}}, \qquad \widetilde{A}^{\eta'}_{\mu\nu} = \sin^2 \phi \ \frac{C^8_{\mu\nu}}{T^8_{\eta'}} + \cos^2 \phi \ \frac{C^0_{\mu\nu}}{T^0_{\eta'}}, \quad \text{where} T^i_P = \frac{Z^i_P}{2E_P} e^{-E_P(t_f - t_0)}$$

using E_P , Z_P^i $(\tan^2 \phi = -(Z_{\eta'}^8 Z_{\eta}^0)/(Z_{\eta}^8 Z_{\eta'}^0)$ from a fit to the 2pt correlation function matrix. However: dedicated spectroscopy analysis yet to be published...

BMW '23: $P \rightarrow \gamma \gamma$ - continuum limit

Gerardin et al., arXiv:2305.04570

Physical results for decay widths and pole contributions to a_{μ} :

- $$\begin{split} & \Gamma[\pi^0 \to \gamma \gamma] = 7.11(44)_{\rm stat}(21)_{\rm sys} {\rm eV}, & a_{\mu}^{\rm HLbL,\,\pi} = 57.8(1.8)_{\rm stat}(0.9)_{\rm stat} \times 10^{-11}, \\ & \Gamma[\eta \to \gamma \gamma] = 388(94)_{\rm stat}(35)_{\rm sys} {\rm eV}, & a_{\mu}^{\rm HLbL,\,\eta} = 11.6(1.6)_{\rm stat}(0.5)_{\rm stat}(1.1)_{\rm FSE} \times 10^{-11}, \\ & \Gamma[\eta' \to \gamma \gamma] = 3.4(1.0)_{\rm stat}(0.4)_{\rm sys} {\rm keV}, & a_{\mu}^{\rm HLbL,\,\eta'} = 15.7(3.9)_{\rm stat}(1.1)_{\rm stat}(1.3)_{\rm FSE} \times 10^{-11}. \\ & \underline{\text{Disclaimer:}} \text{ Results not yet published.} & \boxed{a_{\mu}^{\rm HLbL,\,P} = 85.1(4.7)_{\rm stat}(2.3)_{\rm sys} \cdot 10^{-11}} \end{split}$$
 - $\Gamma[\eta \rightarrow \gamma \gamma]$ agrees with ETMC, similar tension $\lesssim 2\sigma$ with experiment.
 - $a_{\mu}^{\mathrm{HLbL},\eta}$: some tension with whitepaper estimate $a_{\mu}^{\mathrm{HLbL},\eta} = 16.3(1.4) \times 10^{-11}$ Maajuan et al., PRD 95, 054026 (2017) mostly due to data at momenta $< 0.5 \,\mathrm{GeV}^2$
 - Good agreement for $a_{\mu}^{\rm HLbL,\,\eta'}$, i.e. $a_{\mu}^{\rm HLbL,\,\eta'}=$ 14.5(1.9) $\times\,10^{-11}$

Introduction	η,η' on the lattice 000	Overview	ETMC	RQCD	$P \rightarrow \gamma \gamma$ TFFs	Summary & Outlook
000		00	0000000	000000	00000	●
Summary	and outlook					

- LQCD studies of η , η' have made tremendous progress in the last decase, but remain very challenging.
- Physical extrapolations with controlled systematics have become state-of-the-art.
- Physical results for masses with $\lesssim 2\%$ error, agreement with experiment
- Matrix elements / mixing parameters and decay constants from first principles with very competitive precision
- Large- $N_c \chi PT$ can be used to describe / extrapolate lattice data.
 - \rightarrow LECs can be determined, including scale dependence
 - \rightarrow However, some tension remains...
- Simulations directly at physical quark mass now feasible.
 - \rightarrow Direct continuum extrapolations
 - \rightarrow Remove need for chiral extrapolation entirely
- First studies beyond masses and mixing: TFFs; more will follow.

Backup slides

Effects of topology in finite volume (I)

In finite volume and at fixed top. charge Q_t

$$\langle \omega(\mathbf{x})\omega(\mathbf{0})\rangle_{Q_t=\mathrm{fixed}} \rightarrow \frac{1}{V}\left(\chi_t - \frac{Q_t^2}{V} + \frac{c_4}{2V\chi_t}\right) + \dots,$$

for correlators of winding number densities $\omega(x)$ at large |x|.

 \Rightarrow Expect constant offset in $\eta'(\eta)$ correlator at large *t*:

$$<\lambda^{\eta'}(t)>_{Q_t= ext{fixed}} \rightarrow \sim rac{a^5}{T}\left(\chi_t-rac{Q_t^2}{V}+rac{c_4}{2V\chi_t}
ight).$$

S. Aoki et al., Phys.Rev. D76, 054508 (2007)

 η, η' principal correlators tmWilson+Clover, $M_{\mu}=137~{
m MeV},~a=0.068~{
m fm},~L\approx5.4~{
m fm}$

- Always present for finite volume + finite statistics.
- Offset usually compatible with zero within very large statistical point errors.
- (Correlated) Noise in η' -signal largely due to fluctuation + autocorrelation of this constant.
- Causes issues for correlated fits / solving GEVPs.

Effects of topology in finite volume (II)

tmWilson+Clover, $M_{\pi}=137~{
m MeV},~a=0.068~{
m fm},~L\approx5.4~{
m fm}$

Simple but efficient way to correct for this effect: PRD 97, 054508 (2018)

Remove constant using discrete time-derivative correlator:

$$\mathcal{C}(t)
ightarrow ilde{\mathcal{C}}(t) = \mathcal{C}(t) - \mathcal{C}(t + \Delta t)$$

- Resulting data are much less correlated, much smaller point errors.
- Further analysis (GEVP, physical extrapolation) can be carried out in the standard way.

However: η' signal still lost around $t \approx 1 \, \text{fm}$