Six-Meson Scattering and Three Pions on the Lattice

Chiral Dynamics 2024, Bochum

Mattias Sjö, CPT Marseille

(formerly Lund U.)

The people

Hans Bijnens, Lund U.

Stephen Sharpe, U. of Washington

Tomáš Husek, Birmingham U.

Fernando Romero-López, $\mbox{MIT} \rightarrow \mbox{Bern U}.$

Mattias Sjö, CPT Marseille

Jorge Baeza-Ballesteros, U. de València

The papers

Bijnens & Husek, "*Six-pion amplitude*" PRD, 2107.06291[hep-ph] Bijnens, Husek & **MS** "*Six-meson amplitude in QCD-like theories*" PRD, 2206.14212[hep-ph] Baeza-Ballesteros, Bijnens, Husek, Romero-López, Sharpe & **MS** "*The isospin-3 three-particle K-matrix at NLO in ChPT*" JHEP, 2303.13206[hep-ph] Baeza-Ballesteros, Bijnens, Husek, Romero-López, Sharpe & **MS** "*The three-pion K-matrix at NLO in ChPT*" JHEP, 2401.14293[hep-ph]

Introduction: Fernando's plenary (this morning)
 Outlook: Steve's Ferando's parallel talk (18:00)

The tension that was

 Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe, "Three-body interactions from the finite-volume QCD spectrum"
 (see Fernando's talk)

Phys.Rev.D, 2021.06144[hep-lat]

The amplitude

Leading order

Ancient current algebra result

Osborn (1969) Susskind & Frye (1970)

NLO in CHPT

Vertices

$$X = LO$$
 vertex

All the LO and NLO diagrams

One-Loop Integrals

One- and two-propagator integrals

$$\checkmark \qquad \sim \frac{1}{4-d} + \text{(finite)} \qquad q \rightarrow \swarrow_{(q-\ell)}^{\ell} \sim \frac{1}{4-d} + \bar{J}(q^2) + \text{(finite)}$$

Three-propagator integral

$$\int \frac{\mathrm{d}^{d}\ell}{(2\pi)^{d}} \frac{\{1,\ell^{\mu},\ell^{\mu}\ell^{\nu},\ell^{\mu}\ell^{\nu}\ell^{\rho}\}}{(\ell^{2}-M^{2})\left[(\ell-q_{1})^{2}-M^{2}\right]\left[(\ell+q_{2})^{2}-M^{2}\right]}$$

In principle reducible to \overline{J} — **impractical** — redundant basis instead:

$$\{\overline{J}, C, C_{11}, C_{21}, C_3\}(p_1, \ldots, p_6)$$

Simplifying the amplitude

 $\mathcal{M}_3^{\text{NLO}}$ is a function of...

- 6 particle flavors
- > 9 kinematic invariants (8 in d = 4)
- 8 free parameters (5 with just pions)
- $\blacktriangleright \overline{J}(q_i, q_j)$ and 4 $C_X(p_i, p_j, p_k, p_l, p_m, p_n)$'s

 \sim 500 pages in full \rightarrow How to simplify?

Single-particle pole

Factorization

$$\mathcal{M}_{3} = \sum_{\substack{\{ijk\}\\\{lmn\}}} \frac{\mathcal{M}_{2}(p_{i}, p_{j}, p_{k}, +q) \times \mathcal{M}_{2}(p_{k}, p_{l}, p_{n}, -q)}{q^{2} - M^{2} + i\epsilon} + \text{(non-factorizable)}$$

The 4-point amplitude

$$\mathcal{M}^{abcd}(s,t) = [\langle abcd \rangle + \langle dcba \rangle] B(s,t,u) + \langle ab \rangle \langle cd \rangle C(s,t,u) + [\langle acdb \rangle + \langle bdca \rangle] B(t,u,s) + \langle ac \rangle \langle bd \rangle C(t,u,s) + [\langle adbc \rangle + \langle cbda \rangle] B(u,s,t) + \langle ad \rangle \langle bc \rangle C(u,s,t)$$

The stripped 4-point amplitude

$$B = \mathcal{M}_{\{4\}}, \qquad C = \mathcal{M}_{\{2,2\}}$$

Stripped amplitudes

Flavour structures

$$\mathcal{F}_{\{6\}}(a_1, \dots, a_6) = \langle a_1 \cdots a_6 \rangle$$

$$\mathcal{F}_{\{2,4\}}(a_1, \dots, a_6) = \langle a_1 a_2 \rangle \langle a_3 \cdots a_6 \rangle$$

$$\mathcal{F}_{\{3,3\}}(a_1, \dots, a_6) = \langle a_1 a_2 a_3 \rangle \langle a_4 a_5 a_6 \rangle$$

$$\mathcal{F}_{\{2,2,2\}}(a_1, \dots, a_6) = \langle a_1 a_2 \rangle \langle a_3 a_4 \rangle \langle a_5 a_6 \rangle$$

$$\mathcal{M}(p_1, a_1; p_2, a_2; \dots) = \sum_{R} \sum_{\sigma} \mathcal{M}_R(\sigma[p_1, \dots]) \mathcal{F}_R(\sigma[a_1, \dots])$$

Stripping

 $\sigma \notin \text{symmetries of } \mathcal{F}_R$ $\rightarrow \text{well-known, unique}$

Deorbiting

 $\sigma \in \text{symmetries of } \mathcal{F}_R$ $\rightarrow \text{novel, non-unique!}$

 $\mathcal{M}_{3}^{\text{NLO}}$ still won't fit on a slide, but not far from it!

The K-matrix

How to get it

Guiding properties of \mathcal{D}

- ► Exactly cancels divergences → df
- All internal lines on-shell

s-channel one-particle exchange

Only present at isospin 1

No subtraction needed since pole is sub-threshold

Subtracting poles

t-channel one-particle exchange

Note: G necessarily contains a cutoff function

Subtracting cuts

Bull's head cut

Bull's head subtraction

The bull's head integral is **awful**:

- ▶ Triangle loop \Rightarrow complicated, pole-ridden integrand
- ▶ On-shell \Rightarrow no loop momentum shift
- ► Non-analytic ⇒ no Wick rotation, dispersion, etc.

Different approaches

- Some clever but not very useful ways
 Simple part with poles + complicated part (numerics-friendly)
- Brute-force numerics

Because Tomáš is a Mathematica wizard

Semi-analytic

Threshold-expand, then apply deep magic

Threshold expansion

Expansion parameters

$$\Delta \propto \mathcal{P}^2 - (3M_\pi)^2$$
 $\Delta_i^{(\prime)} \propto (\mathcal{P} - \mathcal{p}_i^{(\prime)})^2 - (2M_\pi)^2$
 $ilde{t}_{ij} \propto (\mathcal{p}_i - \mathcal{p}_j')^2$

(**system** above-threshold-ness)

(**pair** above-threshold-ness)

(spectator above-threshold-ness)

Compound parameters

$$\Delta_{\mathsf{A}} = \sum (\Delta_i^2 + \Delta_i'^2) - \Delta^2 \qquad \Delta_{\mathsf{B}} = \sum \tilde{t}_{ij}^2 - \Delta^2$$

Maximum isospin threshold expansion

$$\mathcal{K}_{df,3}^{[\prime=3]} = \mathcal{K}_0 + \mathcal{K}_1 \Delta + \mathcal{K}_2 \Delta^2 + \mathcal{K}_A \Delta_A + \mathcal{K}_B \Delta_B + \mathcal{O}(\Delta^3)$$

Non-maximal isospin

<i>l</i> = 3	Sin	glet
<i>l</i> = 2	Do	ublet
/ = 1	Singlet	Doublet
/ = 0	Antisymme	etric singlet

Minimum isospin threshold expansion

$$\mathcal{K}_{df,3}^{[I=0]} = \mathcal{K}_0^{AS} \sum \epsilon_{ijk} \epsilon_{Imn} \tilde{t}_{il} \tilde{t}_{jm} + \mathcal{O}(\Delta^3)$$

Semi-analytic evaluation

J.Functional Analysis, 1401.7045[math.FA]

Maximum isospin, again

- * Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,
 - "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, " $\pi\pi$ scattering"

† (see Fernando's talk)

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

Subleading order

* Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe, "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, " $\pi\pi$ scattering"

† (see Fernando's talk)

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

Sub-subleading order

- * Blanton, Hanlon, Hörz, Morningstar, Romero-López & Sharpe,
 - "Three-body interactions from the finite-volume QCD spectrum"

** using LECs from FLAG and Colangelo, Gasser & Leutwyler, " $\pi\pi$ scattering"

† (see Fernando's talk)

Phys.Rev.D, 2021.06144[hep-lat] Nucl.Phys.B, hep-ph/0103088

Awaiting more lattice results...

- All three-pion channels covered
- Main tension resolved (where lattice data are available)
- Next steps: More flavors, eventually nucleons Maybe 2 loops? (if anyone ever needs it) Maybe even 4 particles? (if anyone ever needs it) See also Steve's Fernando's parallel talk (18:00)
- > Pion-kaon case is underway on the amplitude side

The threshold expansion works

...better than it has to

- Large LO-NLO difference is troubling...
- ...but LO is very constrained
 - ⇒ **qualitative** difference expected
- Adding NNLO: extremely difficult:
 - Two-loop 6-point amplitude
 - \blacksquare Integral relation between \mathcal{M}_{3} and $\mathcal{K}_{df,3}$