Dispersive Determination of the η/η' Transition Form Factors

in collaboration with M. Hoferichter, B.-L. Hoid and B. Kubis

Simon Holz

AEC, Institute for Theoretical Physics Universität Bern, Switzerland

11th Workshop on Chiral Dynamics August 26, 2024

71

AEC ALBERN ALC ALBERN S. Holz (ITP): Dispersive $\pi^{(2)}$ TFFs Bochum, August 26, 2024

Introduction: The Muon g-2• *g*-factor: strength of coupling to magnetic field

$$\vec{\mu}_{\mu} = -\frac{g}{2m_{\mu}}\vec{S}$$

- in relativistic QM: g = 2
- corrections due to loop effects in Standard Model

$$a_{\mu} = \frac{g-2}{2} = \frac{\alpha_{\rm em}}{2\pi} + \mathcal{O}(\alpha_{\rm em}^2)$$

Schwinger 1948

Introduction: The Muon g-2• *g*-factor: strength of coupling to magnetic field

$$\vec{\mu}_{\mu} = -\frac{g}{2m_{\mu}}\vec{S}$$

- in relativistic QM: g = 2
- corrections due to loop effects in Standard Model

$$a_{\mu} = \frac{g-2}{2} = \frac{\alpha_{\rm em}}{2\pi} + \mathcal{O}(\alpha_{\rm em}^2)$$

Schwinger 1948

- comp. prediction vs. experiment
- hadronic contr. HVP and HLbL dominate uncertainty

Introduction: The Muon g-2• g-factor: strength of coupling to magnetic field

$$\vec{\mu}_{\mu} = -\frac{g}{2m_{\mu}}\vec{S}$$

- in relativistic QM: g = 2
- corrections due to loop effects in Standard Model

$$a_{\mu} = \frac{g-2}{2} = \frac{\alpha_{\rm em}}{2\pi} + \mathcal{O}(\alpha_{\rm em}^2)$$

Schwinger 1948

- comp. prediction vs. experiment
- hadronic contr. HVP and HLbL dominate uncertainty
- WP2020: HLbL precision goal $\lesssim 10 \times 10^{-11}$ Aoyama et al., 2020

$\eta/\eta'\text{-}\mathsf{Pole}$ Contribution

- Model-independent dispersive approach to HLbL: relate conts. to observables like form factors Colangelo et al. 2014
- Pseudoscalar pole contribution $(\pi^0 \text{ dominant Hoferichter et al. 2018}):$
 - Singly-virtual transition form factor (TFF)
 - 🛑 : Doubly-virtual TFF

$\eta/\eta'\text{-}\mathsf{Pole}$ Contribution

- Model-independent dispersive approach to HLbL: relate conts. to observables like form factors Colangelo et al. 2014
- Pseudoscalar pole contribution $(\pi^0 \text{ dominant Hoferichter et al. 2018}):$
 - Singly-virtual transition form factor (TFF)
 - : Doubly-virtual TFF

0

$$i \int d^4x \, e^{iq_1 \cdot x} \langle 0 | T \{ j_\mu(x) j_\nu(0) \} | P(q_1 + q_2) \rangle = \epsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$$

• normalization related to $\Gamma(P \rightarrow \gamma \gamma)$ governed by chiral anomaly

Factorization breaking in the η and η' TFFs

 Basic approaches: Application of VMD form factor in the low-energy regime

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2, q_2^2) \propto \frac{1}{q_1^2 - M_V^2} \times \frac{1}{q_2^2 - M_V^2}$$

• For high energies $(|q_1^2|,|q_2^2|
ightarrow\infty)$ pQCD predicts Walsh, Zerwas 1972

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2, q_2^2) \propto \frac{1}{q_1^2 + q_2^2}$$

- No factorization in the singly-virtual TFFs present
- Model-independent description of intermediate energy regime with factorization breaking of paramount importance for control over uncertainties
- Exp. study (BaBar 2018) showed for $|q_1^2| = |q_2^2| \in [6.5, 45]$ GeV² VMD factorization is breaking down

Formalism for doubly-virtual representations

- Start from $\eta'
 ightarrow 2(\pi^+\pi^-)$ amplitude
 - describe decay via two rho resonances by hidden local symmetry (HLS) model Guo, Kubis, Wirzba 2012
 - left-hand-cut contribution due to a₂ exchange by phenomenological Lagrangian models

Final-state interaction

- in HLS amplitude: introduce pair-wise pion rescattering by replacing ρ propagators by Omnès functions
- in a_2 exchange amplitude \Rightarrow inhomogenous Omnès problem

Towards a TFF representation

1st step

• unitarity condition:

 $\operatorname{Im} M(\eta^{(\prime)} \to \pi^+ \pi^- \gamma^*)$ ~ $\int \mathrm{d}\Phi_2 M(\eta^{(\prime)} \to 2(\pi^+ \pi^-)) M(\pi^+ \pi^- \to \gamma^*)$

- fix subtraction constants from fit to pion spectra in real photon decays $\eta^{(\prime)} \rightarrow \pi^+\pi^-\gamma$ KLOE 2012, BESIII 2017
- a_2 induced LHC leads to curvature effect

2nd step

- apply another (unsubtracted) dispersion relation
- ⇒ double-spectral representation of isovector doubly-virtual TFF

Putting the pieces together

Construct TFF from four ingredients:

$$F_{\eta^{(\prime)}\gamma^*\gamma^*} = F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=1)} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=0)} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{eff}} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{asym}}$$

Isospin 1

- Dispersive piece: offers low-energy description
- reproduces low-energy cuts and singularities
 - additionally, left-hand cut contribution

Isospin 0

• Small; Description of narrow low-energy resonances

Effective Pole Term

- Parameterize higher intermediate states
- Full saturation of normalization sum rule
- Describe high-energy singly-virtual data

pQCD piece

• Induces leading-twist behavior of TFF ($\mathcal{O}(1/Q^2)$ asymptotics)

 η Transition Form Factor

η Transition Form Factor

η Transition Form Factor

η Transition Form Factor

• $1/Q_i^2$ behavior in entire domain of space-like virtualities

• $1/Q_i^2$ behavior in entire domain of space-like virtualities

Slope Parameters

• TFF symmetric in arguments and analytic

$$\Rightarrow \left. b_{\eta^{(\prime)}} \coloneqq \frac{1}{F_{\eta^{(\prime)}\gamma\gamma}} \frac{\mathrm{d}F_{\eta^{(\prime)}\gamma\gamma^*}(q^2,0)}{\mathrm{d}q^2} \right|_{q^2=0} = -\frac{1}{F_{\eta^{(\prime)}\gamma\gamma}} \frac{\mathrm{d}F_{\eta^{(\prime)}\gamma\gamma^*}(-Q^2,0)}{\mathrm{d}Q^2} \right|_{Q^2=0}$$

Slope Parameters

Slope Parameters

Blinded results

rel. err of $a_{\mu}^{\eta^{(\prime)}-\mathrm{pole}}$	disp.	norm	BL	asym.	total
η / %	2.1				
η^\prime / $\%$	1.1				

disp.: dispersive uncertainty

- Variation of cutoffs
- Different representations of pion vector form factor

Blinded results

rel. err of $a_{\mu}^{\eta^{(\prime)}-\mathrm{pole}}$	disp.	norm	BL	asym.	total
η / %	2.1	3.8			
η^\prime / $\%$	1.1	3.6			

norm: normalization uncertainty

- Uncertainty on TFF normalization $F_{\eta^{(\prime)}\gamma\gamma}$
- for η : 1.7 %, for η' : 1.6 % from PDG fit

Blinded results

rel. err of $a_{\mu}^{\eta^{(\prime)}-{ m pole}}$	disp.	norm	BL	asym.	total
η / %	2.1	3.8	1.6		
$\eta^\prime~/~\%$	1.1	3.6	1.0		

- BL: 'Brodsky-Lepage' uncertainty
 - Uncertainty on high-energy singly-virtual TFF
 - Dependent on the available exp. data CELLO, CLEO, L3, BaBar

Blinded results

rel. err of $a_{\mu}^{\eta^{(\prime)}-\mathrm{pole}}$	disp.	norm	BL	asym.	total
η / %	2.1	3.8	1.6	2.3	
$\eta^\prime~/~\%$	1.1	3.6	1.0	3.6	

asym.: asymptotic uncertainty

- Variation of matching point to pQCD piece
- Variation of (doubly-virtual) asymptotic limits

Blinded results

rel. err of $a_{\mu}^{\eta^{(\prime)}-\mathrm{pole}}$	disp.	norm	BL	asym.	total
η / %	2.1	3.8	1.6	2.3	5.2
$\eta^\prime~/~\%$	1.1	3.6	1.0	3.6	5.3

• Unblinding is imminent

Conclusions and Outlook

Dispersive reconstruction of η/η' transition form factors

- Incorporated all of the lowest-lying singularities
- Non-factorizing effects included via *a*₂-exchange model
- Matched to perturbative QCD for asymptotic piece
- Analogous analysis to dispersive π^0 TFF Hoferichter et al., 2018

Data-driven determination of $a_{\mu}^{\eta^{(\prime)}-\text{pole}}$

- Carefully estimated improvable uncertainties
- WP 2020 precision goal of $\lesssim 10\,\%$ reached <code>Aoyama</code> et al., 2020
- normalization from experimental input of $\Gamma(\eta^{(\prime)} o \gamma \gamma)$
- dispersive inputs may be consolidated with additional data for $\eta \to \pi^+ \pi^- \gamma$, $e^+ e^- \to \eta^{(\prime)} \pi^+ \pi^-$, ...
- Additional singly-virtual TFF data in the future?