

FACULTY OF MATHEMATICS AND PHYSICS Charles University

New $\pi^0 \rightarrow e^+e^-$ result from NA62

Michal Koval michal.koval@cern.ch

Charles University in Prague

on behalf of the NA62 Collaboration

Chiral Dynamics 2024, 26 – 30 August 2024

NA62 Experiment at CERN

- Detector installation completed in 2016
- Physics runs in 2016 2018 (Run 1)
- Data taking resumed in 2021, approved up to CERN LS3 (Run 2)
- ► Main goal: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement → Run 1 result: [JHEP 06 (2021) 093]
- ▶ NA62 program: K^+ physics and more

NA62: located at CERN in the North Area

- \rightarrow fixed-target experiment
- \rightarrow using 400 GeV/c SPS proton beam

NA62 Beam

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- ▶ 70% pions, 24% protons, 6% kaons
- Nominal beam particle rate (at GTK3): 750 MHz
- Average beam particle rate during 2018 data-taking: 450 500 MHz

NA62 Detector

- KTAG: differential Cherenkov counter
- GTK: Si pixel beam tracker
- CHANTI: stations of plastic scintillator bars
- LAV: lead glass ring calorimeters
- STRAW: straw magnetic spectrometer
- RICH: Ring Imaging Cherenkov counter

- CHOD: planes of scintillator tiles and slabs
- IRC: inner ring shashlik calorimeter
- LKr: liquid krypton electromagnetic calorimeter
- MUV1,2: hadron calorimeter
- MUV3: plane of scintillator tiles for muon ID
- SAC: small angle shashlik calorimeter

NA62 Physics

Main topic of this presentation:

 $ightarrow \pi^{0}
ightarrow e^{+}e^{-}$ decay measurement

(preliminary results)

Broad physics program at NA62:

- Main goal: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement
- Precision measurements of rare kaon decays (spare slides):
 - $ightarrow \ {\cal K}^+
 ightarrow \pi^+ \gamma \gamma ~{
 m decay}$
 - \rightarrow $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay
 - $ightarrow~{\cal K}^+
 ightarrow \pi^+ \mu^+ \mu^-$ decay
- Searches for lepton number and lepton flavour violating decays
- Searches for very rare decays
- Searches for feebly interacting particles

[PLB 850 (2024) 138513] [JHEP 09 (2023) 040] [JHEP 11 (2022) 011]

$\pi^{0} \rightarrow e^{+}e^{-}$: Introduction

- Diagram considered in theoretical predictions
- Various π⁰ → γ^{*}γ^{*} transition form factors lead to B(π⁰ → e⁺e⁻, no-rad)

Experimentally observable:

 $\mathcal{B}(\pi^0
ightarrow e^+ e^-(\gamma), x > x_{ ext{cut}}), \quad x = m_{ee}^2/m_{\pi^0}^2$

- ► Dalitz decay π⁰ → γ e⁺e⁻: dominant in low-x region
- For $x > x_{cut} = 0.95$, Dalitz decay $\approx 3.3\%$ of $\mathcal{B}(\pi^0 \to e^+e^-(\gamma))$

$\pi^0 \rightarrow e^+e^-$: Previous Measurement

Experimentally observable:

$$\mathcal{B}(\pi^0
ightarrow e^+ e^-(\gamma), x > x_{ ext{cut}}), \quad x = m_{ee}^2/m_{\pi^0}^2$$

Previous best measurement by KTeV [PRD 75 (2007) 012004]

$$\mathcal{B}_{\mathsf{KTeV}}(\pi^0 o e^+ e^-(\gamma), x > 0.95) = (6.44 \pm 0.25 \pm 0.22) imes 10^{-8}$$

Using latest radiative corrections in [JHEP 10 (2011) 122], [EPJC 74 (2014) 8, 3010], [PRD 110 (2024), 033004], the result can be extrapolated and compared with theory:

$\mathcal{B}(\pi \rightarrow e e , 10\text{-rad}) \times 10$
6.84(35)
6.2(3)
6.23(9)
6.12(6)
6.25(3)

 $| \mathcal{B}(\pi^0 \rightarrow e^+ e^-, \text{ no-rad}) \times 10^8$

Data Sample and Trigger

- Data sample collected by NA62 in 2017 and 2018
- ▶ Signal decay mode: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \equiv K^+ \rightarrow \pi^+ \pi^0_{ee}$
 - Latest radiative corrections included in the simulation
- ► Normalization decay mode: $K^+ \rightarrow \pi^+ e^+ e^-$
 - ▶ Identical final state as the signal, common selection criteria \rightarrow cancellation of systematics
 - Selecting almost background-free region mee > 140 MeV
- Multi-track electron trigger line used to collect both $K^+ \to \pi^+ \pi_{ee}^0$ and $K^+ \to \pi^+ e^+ e^-$
 - Downscaling factor $D_{eMT} = 8$
 - Level-0: RICH, CHOD, LKr
 - Level-1: KTAG, Straw
 - ▶ Total trigger efficiency \approx 90% for both signal and normalization

Backgrounds for the signal decay mode:

• $K^+ \rightarrow \pi^+ e^+ e^-$: irreducible, flat in the signal region close to the π^0 mass

$$\blacktriangleright \ \mathbf{K}^+ \to \pi^+ \pi^0, \ \pi^0 \to \gamma \ \mathbf{e}^+ \mathbf{e}^- \equiv \mathbf{K}^+ \to \pi^+ \pi_D^0$$

a) Large-x tail of the π^0 Dalitz decay distribution

b) Photon conversion in STRAW + selection of a e^{\pm} track from the conversion

 π^{0} double Dalitz decay with two undetected e^{\pm}

Common Selection Criteria for $K^+ \to \pi^+ \pi^0_{ee}$ and $K^+ \to \pi^+ e^+ e^-$

- Three track vertex topology (STRAW)
- Timing cuts (CHOD, KTAG)
- Kinematic constraints on total and transverse momenta of the vertex
- Particle ID using LKr + STRAW and decay kinematics
 - ▶ π⁺: E/p < 0.9</p>
 - $e^{\pm}: E/p \in (0.9, 1.1)$
 - Total invariant mass: $m_{\pi ee} \in (480, 510) \, \text{MeV}$
 - Di-electron invariant mass: m_{ee} > 130 MeV
- Background suppression:
 - Using STRAW hit information to reject
 e[±] tracks from γ conversions
 - Reject events with a track segment reconstructed in the first two STRAW chambers compatible with the vertex

${\cal K}^+ ightarrow \pi^+ e^+ e^-$ Normalization Sample

- Common selection applied
- Normalization region:

 $m_{ee} \in (140, 360) \, \mathrm{MeV}$

- Number of observed events: 12160
- Acceptance:

$${\it A}({\it K}^+ o \pi^+ {\it e}^+ {\it e}^-) = (4.70 \pm 0.01_{
m stat})\%$$

- Sample purity > 99.9%
- Effective number of kaon decays:

$$\textit{N}_{\mathcal{K}} = ig(8.62 \pm 0.08_{\mathsf{stat}} \pm 0.26_{\mathsf{ext}} ig) imes \mathsf{10}^{\mathsf{11}}$$

External uncertainty from

$$\mathcal{B}_{ t PDG}(K^+ o \pi^+ e^+ e^-) = (3.00 {\pm} 0.09) { imes} 10^{-7}$$

${\it K}^+ ightarrow \pi^+ \pi^0_{ee}$ Signal Sample

- Common selection applied
- ► Fit region:

 $m_{ee} \in (130, 140) \, \text{MeV}$

Signal acceptance ($x_{true} > 0.95$):

 ${\cal A}({\cal K}^+ o \pi^+ \pi_{ee}^0) = (5.72 \pm 0.02_{
m stat})\%$

► Branching fraction of π⁰ → e⁺e⁻ obtained by performing maximum likelihood fit of simulated samples to data

 $\mathcal{B}(\pi^0 o e^+ e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{ ext{stat}}) imes 10^{-8}$

- Branching fractions of other decays: external input from PDG 2023
- Fitted signal event yield: 597 ± 29

•
$$\chi^2$$
 test: χ^2 /ndf = 25.3/19, *p*-value: 0.152

Preliminary Result and Uncertainties

$$\begin{split} \mathcal{B}_{\mathsf{NA62}}(\pi^0 \to {\pmb{e}}^+ {\pmb{e}}^-(\gamma), x > 0.95) &= (5.86 \pm 0.30_{\mathsf{stat}} \pm 0.11_{\mathsf{syst}} \pm 0.19_{\mathsf{ext}}) \times 10^{-8} \\ &= (5.86 \pm 0.37) \times 10^{-8} \end{split}$$

	$\delta \mathcal{B} \left[10^{-8} \right]$	$\delta {\cal B}/{\cal B}$ [%]
Statistical uncertainty	0.30	5.1
Total external uncertainty	0.19	3.2
Total systematic uncertainty	0.11	1.9
Trigger efficiency	0.07	1.2
Radiative corrections for $\pi^{0} ightarrow oldsymbol{e}^{+}oldsymbol{e}^{-}$	0.05	0.9
Background	0.04	0.7
Reconstruction and particle identification	0.04	0.7
Beam simulation	0.03	0.5

Summary and Outlook

▶ New preliminary result based on data collected by NA62 in 2017 – 2018:

$$\begin{split} \mathcal{B}_{\mathsf{NA62}}(\pi^0 \to {\pmb{e}}^+ {\pmb{e}}^-(\gamma), x > 0.95) &= (5.86 \pm 0.30_{\mathsf{stat}} \pm 0.11_{\mathsf{syst}} \pm 0.19_{\mathsf{ext}}) \times 10^{-8} \\ &= (5.86 \pm 0.37) \times 10^{-8} \end{split}$$

Lower central value than in KTeV measurement, but results are compatible:

$$\mathcal{B}_{\mathsf{KTeV}}(\pi^0 o e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.33) imes 10^{-8}$$

Result in agreement with theory when extrapolated using radiative corrections:

$${\cal B}_{\sf NA62}(\pi^0 o e^+e^-, \, {\sf no-rad}) = (6.22 \pm 0.39) imes 10^{-8} \ {\cal B}_{\sf theory\,(2022)}(\pi^0 o e^+e^-, \, {\sf no-rad}) = (6.25 \pm 0.03) imes 10^{-8}$$

- External uncertainty from B(K⁺ → π⁺e⁺e⁻), measured by NA48/2 and E865
 New analysis of K⁺ → π⁺e⁺e⁻ is planned at NA62
- Ongoing NA62 data taking (2021 LS3)
 - Optimized multi-track electron trigger line with reduced downscaling
 - Collecting large samples of decays with di-electron final states

Summary and Outlook

▶ New preliminary result based on data collected by NA62 in 2017 – 2018:

$$\begin{split} \mathcal{B}_{\mathsf{NA62}}(\pi^0 \to {\pmb{e}}^+ {\pmb{e}}^-(\gamma), x > 0.95) &= (5.86 \pm 0.30_{\mathsf{stat}} \pm 0.11_{\mathsf{syst}} \pm 0.19_{\mathsf{ext}}) \times 10^{-8} \\ &= (5.86 \pm 0.37) \times 10^{-8} \end{split}$$

Lower central value than in KTeV measurement, but results are compatible:

$$\mathcal{B}_{\mathsf{KTeV}}(\pi^0 o e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.33) imes 10^{-8}$$

Result in agreement with theory when extrapolated using radiative corrections:

$${\cal B}_{\sf NA62}(\pi^0 o e^+e^-, \,{\sf no-rad}) = (6.22 \pm 0.39) imes 10^{-8} \ {\cal B}_{\sf theory\,(2022)}(\pi^0 o e^+e^-, \,{\sf no-rad}) = (6.25 \pm 0.03) imes 10^{-8}$$

- External uncertainty from B(K⁺ → π⁺e⁺e⁻), measured by NA48/2 and E865
 New analysis of K⁺ → π⁺e⁺e⁻ is planned at NA62
- Ongoing NA62 data taking (2021 LS3)
 - Optimized multi-track electron trigger line with reduced downscaling
 - Collecting large samples of decays with di-electron final states

Thank you for your attention

Spare slides: Other results from NA62

NA62 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Result from Run 1

- SM prediction: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$ [JHEP 11 (2015) 033]
- NA62 Run 1 = 2016 2018 data: 20 signal candidates, expected background: 7.0 events [JHEP 06 (2021) 093]

$$\mathcal{B}(K^+ o \pi^+
u ar{
u})_{\mathsf{NA62}} = (10.6^{+4.0}_{-3.4}|_{\mathsf{stat}} \pm 0.9_{\mathsf{syst}}) imes 10^{-11}$$

${\it K}^+ \rightarrow \pi^+ \gamma \gamma$: Overview

- Crucial test of ChPT
- Main kinematic variable : $z = (q_1 + q_2)^2 / M_K^2 = m_{\gamma\gamma}^2 / M_K^2$
- B(K⁺ → π⁺γγ) parameterized in ChPT by an unknown real parameter ĉ
- Signal selection
 - Single positive track identified as π⁺ matched with a K⁺ track
 - Two γ clusters in LKr
 - Kinematic constraints on $m_{\pi\gamma\gamma}$, $p_{\pi\gamma\gamma}$
 - *z* ∈ (0.20, 0.51)
- ► Normalization: $K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \gamma \gamma$ with $z \in (0.04, 0.12)$
- ► Main background: $K^+ \rightarrow \pi^+ \pi^0 \gamma, \pi^0 \rightarrow \gamma \gamma$ decay; cluster merging in calorimeter

 $K^+ \rightarrow \pi^+ \gamma \gamma$: Results

- ▶ 3984 observed events; 291 ± 14 events expected background
- \hat{c} parameter measured in ChPT $\mathcal{O}(p^4)$ and $\mathcal{O}(p^6)$ using χ^2 minimization
- ChPT $\mathcal{O}(p^4)$ p-value: 2.7 · 10⁻⁸: not sufficient to describe the z spectrum
- ► ChPT *O*(*p*⁶) p-value: 0.49

$K^+ \rightarrow \pi^+ \gamma \gamma$: Results

$$\begin{split} \hat{c}^6 &= 1.144 \pm 0.069_{\text{stat.}} \pm 0.034_{\text{syst.}} \\ \mathcal{B}_{\text{ChPT}\mathcal{O}(p^6)}(K^+ \to \pi^+ \gamma \gamma) &= (9.61 \pm 0.15_{\text{stat.}} \pm 0.07_{\text{syst.}}) \cdot 10^{-7} \\ \mathcal{B}_{\text{MI}}(K^+ \to \pi^+ \gamma \gamma | z > 0.20) &= (9.46 \pm 0.19_{\text{stat.}} \pm 0.07_{\text{syst.}}) \cdot 10^{-7} \end{split}$$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Overview

Inner Bremsstrahlung (IB) decay amplitude: \rightarrow divergent for $E_{\gamma} \rightarrow 0$ and $\theta_{e,\gamma} \rightarrow 0$ Theoretical predictions and experimental measurements for **3 sets** of cuts: minimal E_{γ} and $\theta_{e,\gamma}$ (in K^+ rest frame)

$$m{\mathcal{R}}_{j} = rac{\mathcal{B}(\mathcal{K}e3\gamma^{j})}{\mathcal{B}(\mathcal{K}e3)} = rac{\mathcal{B}(\mathcal{K}^{+}
ightarrow \pi^{0}m{e}^{+}
u\gamma \mid m{E}_{\gamma}^{j}, \ heta_{m{e},\gamma}^{j})}{\mathcal{B}(\mathcal{K}^{+}
ightarrow \pi^{0}m{e}^{+}
u(\gamma))}$$

	E_{γ} cut	$\theta_{\theta,\gamma}$ cut	$O(p^6)$ ChPT	ISTRA+	OKA
			[EPJ C 50, 557]		
$R_1 (\times 10^2)$	$E_{\gamma} >$ 10 MeV	$ heta_{e,\gamma} > 10^\circ$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_2 (\times 10^2)$	$E_{\gamma} >$ 30 MeV	$ heta_{m{e},\gamma}>$ 20 $^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_3 (\times 10^2)$	$E_{\gamma} > 10 \; MeV$	$0.6 < \cos heta_{e,\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

T-odd observable
$$\xi$$
 (*K*⁺ rest frame): $\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{m_K^3}$; Asymmetry: $A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Samples and Analysis

- ► Normalization: $K^+ \rightarrow \pi^0 e^+ \nu$ N(events) $\approx 6.6 \times 10^7$, 10^{-4} background
- $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ signal samples, 3 regions S_i :
 - \rightarrow N(events) \approx 1 \times 10⁵
 - \rightarrow Background: < 1%
 - \rightarrow Main source of bkg.: accidental activity
- Evaluation of R_j:

$$m{R}_{j} = rac{\mathcal{B}(K_{e3\gamma^{j}})}{\mathcal{B}(K_{e3})} = rac{m{N}_{\mathcal{K}e3\gamma^{j}}^{\mathrm{obs}} - m{N}_{\mathcal{K}e3\gamma^{j}}^{\mathrm{bkg}}}{m{N}_{\mathcal{K}e3}^{\mathrm{obs}} - m{N}_{\mathcal{K}e3}^{\mathrm{bkg}}} \cdot rac{m{A}_{\mathcal{K}e3}}{m{A}_{\mathcal{K}e3\gamma^{j}}} \cdot rac{\epsilon_{\mathcal{K}e3}^{\mathrm{trig}}}{\epsilon_{\mathcal{K}e3\gamma^{j}}^{\mathrm{trig}}}.$$

Evaluation of asymmetry:

$$\textit{\textbf{A}}^{\text{NA62}}_{\xi} = \textit{\textbf{A}}^{\text{Data}}_{\xi} - \textit{\textbf{A}}^{\text{MC}}_{\xi}$$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Results

Ratio measurement:

	$O(p^6)$ ChPT	ISTRA+	OKA	NA62
$R_1 (imes 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.715 \pm 0.005 \pm 0.010$
$R_2 (imes 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.609 \pm 0.003 \pm 0.006$
$R_3 (imes 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.533 \pm 0.003 \pm 0.004$

- Precision improved by a factor > 2
- About 5% smaller value than ChPT prediction

Asymmetry measurement:

	ISTRA+	OKA	NA62
$A_{\xi}(S_1)$ (×10 ³)		$-0.1\pm3.9\pm1.7$	$-\textbf{1.2}\pm\textbf{2.8}\pm\textbf{1.9}$
$A_{\xi}(S_2)$ (×10 ³)		$-4.4\pm7.9\pm1.9$	$-\textbf{3.4}\pm\textbf{4.3}\pm\textbf{3.0}$
$A_{\xi}(S_3)~(imes 10^3)$	15 ± 21	$7.0\pm8.1\pm1.5$	$-9.1\pm5.1\pm3.5$

- Compatible with no asymmetry
- Uncertainties still larger than theory expectations

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Overview

 ${\cal K}^{\pm}
ightarrow \pi^{\pm} \ell^+ \ell^-$ decays ($\ell={\it e},\mu$)

- Flavour-changing neutral-current processes
- Kinematic variable $z = m^2 (\ell^+ \ell^-) / m_K^2$
- ▶ Dominant contribution via virtual photon exchange $K^{\pm} \rightarrow \pi^{\pm} \gamma^* \rightarrow \pi^{\pm} \ell^+ \ell^-$
- Form factor of the $K^{\pm} \rightarrow \pi^{\pm} \gamma^{*}$ transition: W(z)
- Chiral Perturbation Theory parameterization of W(z) at $\mathcal{O}(p^6)$:

$$W(z) = G_F m_K^2(\mathbf{a}_+ + \mathbf{b}_+ z) + W^{\pi\pi}(z)$$

 a_+, b_+ : real parameters $W^{\pi\pi}(z)$: complex function, two-pion loop

Main goals of the NA62 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurement:

- Measure model-independent branching fraction $\mathcal{B}_{\pi\mu\mu}$
- Measure function $|W(z)|^2$
- Determine FF parameters a₊ and b₊

${\cal K}^+ ightarrow \pi^+ \mu^+ \mu^-$: Sample and Analysis

${\it K}^+ \rightarrow \pi^+ \mu^+ \mu^-$ sample:

- Data: 27679 events observed
- ► Normalization using $K^+ \rightarrow \pi^+ \pi^+ \pi^-$: $N(K^+ \text{decays}) \approx 3.5 \times 10^{12}$
- ► Expected background: ≈ 8 events

Analysis:

- ► Data divided in 50 equipopulated bins in *z*: $\left(\frac{\mathrm{d}\Gamma(z)}{\mathrm{d}z}\right)_{i} = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \cdot \frac{1}{\Delta z_{i}} \cdot \frac{1}{N_{K}} \cdot \frac{\hbar}{\tau_{K}}$
- Integrating $d\Gamma(z)/dz \rightarrow model-independent \mathcal{B}$
- ► $|W(z)|^2$ function values extracted from $d\Gamma(z)/dz$
- Fit of $|W(z)|^2$ data points \rightarrow ChPT form factor parameter measurement

${\cal K}^+ ightarrow \pi^+ \mu^+ \mu^-$: Measurement Results

Form factor parameters:

- ► Two possible solutions:
 - a_+ , b_+ : both *negative* or *positive* values
- Preferred negative solution $\chi^2/ndf = 45.1/48$ (*p*-value = 0.59):

 $a_+ = -0.575 \pm 0.013$ $b_+ = -0.722 \pm 0.043$ correlation $ho(a_+, b_+) = -0.972$

Branching fraction: $\mathcal{B}_{\pi\mu\mu} = (9.15 \pm 0.08) \times 10^{-8}$

${\cal K}^+ ightarrow \pi^+ \mu^+ \mu^-$: Comparison with Previous Measurements

- At least factor of 3 improvement wrt previous $K_{\pi\mu\mu}$ measurements
- Measurements are compatible
 - ightarrow Agreement in $a_+, \, b_+$ from $K_{\pi\mu\mu}$ and $K_{\pi ee}$ ightarrow lepton flavour universality \checkmark