Chiral extrapolation of $\pi\pi$ scattering amplitudes and hadronic vacuum polarization

J. Ruiz de Elvira

Complutense University of Madrid and IPARCOS

11th Workshop on Chiral Dynamics, Bochum, August 29th, 2024

Niehus, Hoferichter, Kubis, Ruiz de Elvira, Phys. Rev. Lett. 126 (2021) 102002 Colangelo, Hoferichter, Kubis, Niehus, Ruiz de Elvira, PLB 825 (2022) 136852

QCD spectrum in the lattice

- important progress in understanding the QCD spectrum from first principles in lattice QCD
- computations at physical M_{π} available

[Alexandrou et al. (2024), Boyle et al. (2023, 2024), Fischer et al. (2021), . . .]

- but most calculations still at unphysically large pion masses
 - \hookrightarrow extrapolation to the physical point required
- controlled using effective field theories: Chiral Perturbation Theory (ChPT)
 - \hookrightarrow limited to low-energies for perturbative observables

$$t(s)\big|_{\mathrm{ChPT}} = t_2(s) + t_4(s) + t_6(s) + \cdots$$

- ChPT satisfies unitarity only perturbative
 - \hookrightarrow resonance description requires unitarization
- Inverse ampitude method

$$t_{\mathsf{NLO}}^{\mathsf{IAM}}(s) = \frac{t_2(s)^2}{t_2(s) - t_4(s)}, \quad t_{\mathsf{NNLO}}^{\mathsf{IAM}}(s) = \frac{t_2(s)^2}{t_2(s) - t_4(s) - t_6(s) + t_4(s)^2/t_2(s)}$$

• IAM relies on the chiral perturbative expansion in M_{π}

← applied to study lattice data and resonance properties for unphysical pion masses [Pelaez, Hanhart, Rios (2008), Pelaez, Nebreda (2010), Bolton, Briceño, Wilson (2016), Hu, Guo, Molina, Döring, Alexandru, Mai (2016, 2017, 2018)]

but so far mostly applied at one-loop order

 \hookrightarrow study the convergence of the IAM in M_{π} requires two-loop order

two-loop analysis missing because

no analytic two-loop expressions

- large number of N²LO LECs leads to unstable fits
- in this talk for ππ scattering
 - \hookrightarrow analytic and compact expressions for two-loop amplitudes
 - \hookrightarrow strategy for a stable fit
 - \hookrightarrow application to the hadronic vacuum polarization

• LO: current algebra results

$$t_0^0(s)\big|_2 = \frac{2s - M_\pi^2}{32\pi F^2}, \quad t_0^2(s)\big|_2 = -\frac{s - 2M_\pi^2}{32\pi F^2}, \quad t_1^1(s)\big|_2 = \frac{s - 4M_\pi^2}{96\pi F^2}, \quad t_2^\prime(s)\big|_2 = 0.$$

• NLO: the partial-wave amplitudes can be written in the form

$$\operatorname{\mathsf{Re}} t_J^l(s)\big|_4 = \sum_{i=0}^2 b_i^{U}(s) \left[L(s) \right]^i + \sum_{i=1}^3 b_{l_i}^{U}(s) l_i^r, \quad L(s) = \log \frac{1+\sigma(s)}{1-\sigma(s)}, \quad \sigma(s) = \sqrt{1-\frac{4M_\pi^2}{s}}$$

[Niehus, Hoferichter, Kubis, JRE (2021)]

[Weinberg (1966)]

 \triangleright with $b_i^{IJ}(s)$ and $b_{I_i}^{IJ}(s)$ polynomials

NNLO: expressions can be brought into similar form

$$\mathsf{Re} t_{J}^{I}(s) \big|_{6} = \sum_{i=0}^{4} c_{i}^{U}(s) \left[L(s) \right]^{i} + \sum_{i=1}^{3} c_{i_{i}}^{U}(s) l_{i}^{r} + d^{II}(s) \left[\sum_{n=\pm} \mathsf{Li}_{3}(\sigma_{n}(s)) - L(s) \,\mathsf{Li}_{2}(\sigma_{-}(s)) \right] \\ + c_{l_{3}}^{U}(s) \left(l_{3}^{r} \right)^{2} + P^{IJ}(s), \quad \sigma_{\pm}(s) = 2\sigma(s) / (\sigma(s) \pm 1) \quad \mathsf{Li}_{i} \equiv \mathsf{polylogs}.$$

[Niehus, Hoferichter, Kubis, JRE (2021)]

▷ with $c_i^{IJ}(s)$, $c_{l_i}^{IJ}(s)$, $c_{l_3}^{IJ}(s)$ and $d^{II}(s)$ polynomials ▷ P(s) polynomial containing N²LO LECs r_i

- work with pion decay constant in the chiral limit F
 - \triangleright at LO: only *F* and *M*_{π}
 - \triangleright at NLO: one LEC combination $l_2^r l_1^r$
 - \triangleright at N²LO: three NLO LECs, l_1^r , l_2^r , l_3^r and three NNLO, r_a , r_b , r_c
- compute the IAM energy levels via Lüscher's quantization condition

$$\delta(E^*_{\pi\pi})=\mathcal{Z}(E^*_{\pi\pi})$$

working in lattice units wherever possible

• for each lattice ensemble minimize

$$E_i^{\text{lat}} - E_i^{\text{IAM}}, \quad F_{\pi}^{\text{lat}} - F_{\pi}^{\text{ChPT}}$$

keeping lattice correlations

$\pi\pi$ P-wave fit to CLS data

benchmark check: fit to 5 CLS ensembles

together with CLS data for F_{π}

 \hookrightarrow 3 lattice spacings and $M_{\pi} \in$ [200, 283] MeV

• e.g. NNLO result for the D101 ensemble

[C. Andersen, J. Bulava, B. Hörz, and C. Morningstar (2019)]

[M. Bruno, T. Korzec, and S. Schaefer (2017)]

[Niehus, Hoferichter, Kubis, JRE (2021)]

$\pi\pi$ P-wave fit to CLS data

benchmark check: fit to 5 CLS ensembles

together with CLS data for F_{π}

 \hookrightarrow 3 lattice spacings and $M_{\pi} \in$ [200, 283] MeV

e.g. NNLO result for the D101 ensemble

[C. Andersen, J. Bulava, B. Hörz, and C. Morningstar (2019)]

[M. Bruno, T. Korzec, and S. Schaefer (2017)]

[Niehus, Hoferichter, Kubis, JRE (2021)]

D101 (M = 222.99 MeV):

J. Ruiz de Elvira (UCM)

benchmark check: fit to 5 CLS ensembles

together with CLS data for F_{π}

- \hookrightarrow 3 lattice spacings and $M_{\pi} \in$ [200, 283] MeV
- e.g. NNLO result for the D101 ensemble

• uncertainties:

- statistical errors: jackknife resampling
- \triangleright lattice spacing: only enters in the renormalization scale μ
- truncation of the chiral expansion

chiral expansion in $\alpha = M_{\pi}^2/M_{\rho}^2$

for a given chiral observable X, define the truncation error

$$\Delta X_{\rm NLO} = \alpha X_{\rm NLO}, \quad \Delta X_{\rm NNLO} = \max \left\{ \alpha^2 X_{\rm NLO}, \alpha \left| X_{\rm NLO} - X_{\rm NNLO} \right| \right\}$$

[C. Andersen, J. Bulava, B. Hörz, and C. Morningstar (2019)]

[M. Bruno, T. Korzec, and S. Schaefer (2017)]

[Niehus, Hoferichter, Kubis, JRE (2021)]

[Epelbaum, Krebs, Meißner (2015)]

$\pi\pi$ P-wave fit to CLS data: results

• fit results:

• NNLO improvement but fit quality still not acceptable

- \hookrightarrow truncation error dominates at NLO
- tension between F and ρ parameters at NNLO
 - \hookrightarrow more detailed understanding of lattice artifacts required

[Niehus, Hoferichter, Kubis, JRE (2021)]

$\pi\pi$ P-wave fit to CLS data: $\rho(770)$ results

- compatible with phenomenological results small tension for the NNLO width
- RBC/UKQCD result: $M_{\rho} = 796(5)(50), \Gamma_{\rho} = 192(10)(30)$

[Niehus, Hoferichter, Kubis, JRE (2021)]

[Boyle et al. (2024)]

 \hookrightarrow look at NNLO chiral extrapolation

J. Ruiz de Elvira (UCM)

CD2024 8

- chiral extrapolation part of systematic error budget
 - \hookrightarrow extrapolation to (or interpolation around) physical quark masses
- biggest contribution from I = 1 ud isospin-symmetric correlator
 - \hookrightarrow phenomenologically dominated by 2π channel, first correction from 4π
- ChPT not enough

Golterman, Maltman, Peris (2017)

$$a_{\mu}^{l=1} = rac{lpha}{24\pi^2} \left(-\lograc{M_{\pi}^2}{m_{\mu}^2} - rac{31}{6} + 3\pi^2 \sqrt{rac{M_{\pi}^2}{m_{\mu}^2}} + \mathcal{O}\left(rac{M_{\pi}^2}{m_{\mu}^2}\log^2rac{M_{\pi}^2}{m_{\mu}^2}
ight)
ight)$$

 \hookrightarrow "convergence" in M_{π}/m_{μ}

- need to provide information on the $\rho(770)$ resonance
 - \hookrightarrow inverse amplitude method at two-loop order

• data-driven approach the HVP

$$a_{\mu}^{\mathsf{HVP}} = \left(rac{lpha m_{\mu}}{3\pi}
ight)^2 \int_{s_{\mathsf{thr}}}^{\infty} ds rac{\hat{K}(s)}{s^2} R_{\mathsf{had}}(s)$$

 \hookrightarrow expressed in terms of the R-ratio

$$R_{
m had}(s) = rac{3s}{4\pilpha^2}\sigma(e^+e^-
ightarrow {
m hadrons})$$

[talk by Frederic Stieler]

• two-pion contribution to *R*_{had}(*s*)

$$\sigma(e^+e^- \to \pi^+\pi^-) = \frac{\pi\alpha^2}{3s} \sigma_\pi^3(s) \left|F_\pi^V(s)\right|^2$$

 \hookrightarrow pion vector form factor

$$\langle \pi^{\pm}(p')|j^{\mu}_{\mathsf{em}}(0)|\pi^{\pm}(p)
angle=\pm(p'+p)^{\mu}F^{V}_{\pi}((p'-p)^{2})$$

Decomposition of pion form factor

[talk by G. Colangelo]

elastic ππ contribution via Omnès factor

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

- $G_{\omega}(s)$ does not contribute to I = 1 correlator
- parameterized as normal or conformal polynomial
 - \hookrightarrow free parameters can be matched to $\langle r_{\pi}^2 \rangle$

$$\left|F_{\pi}^{V}(s)\right|_{l=1} = \left[1 + \left(\frac{\langle r_{\pi}^{2}\rangle}{6} - \dot{\Omega}_{1}^{1}(0)\right)s\right]\Omega_{1}^{1}(s)$$

글 🕨 🔸 글 🕨

- Pion-mass dependence of $\langle r_{\pi}^2 \rangle$ at two loops known
 - \hookrightarrow at NNLO new LEC r_{v1}^r
- from resonance saturation $r_{v1}^r = 2.0 \times 10^{-5}$
 - \hookrightarrow in concord with lattice
- LECs in $\delta_1^1(s)$: combined fit to
 - CLS lattice data

[Bijnens, Colangelo, Talavera (1998)]

[Feng, Fu, Jin (2020)]

[C. Andersen, J. Bulava, B. Hörz, and C. Morningstar (2019)]

 \triangleright dispersive $e^+e^- \rightarrow \pi^+\pi^-$ data analysis

[Colangelo, Hoferichter, Stoffer (2019)]

 \hookrightarrow describes the physical point within uncertainties

$$\begin{split} a_{\mu}^{\mathsf{HVP}}[\pi\pi, \leq 1 \, \mathrm{GeV}]\big|_{l=1} &= 486.3(1.4)(2.1) \times 10^{-10} \\ a_{\mu}^{\mathsf{HVP}}[\pi\pi, \leq 1 \, \mathrm{GeV}]\big|_{l=1}^{\mathsf{NLO}} &= 460.4(0.3)(14.9)(7.2) \times 10^{-10}, \\ a_{\mu}^{\mathsf{HVP}}[\pi\pi, \leq 1 \, \mathrm{GeV}]\big|_{l=1}^{\mathsf{NNLO}} &= 482.4(0.1)(0.7)(8.0) \times 10^{-10}, \end{split}$$

480 480 $\begin{array}{c} 460 \\ \bar{q}_{\mu}^{\rm MAD} \left[\underline{\pi} \underline{\pi} \right] \\ 420 \\ 400 \\ 400 \end{array}$ $imes 10^{10}$ 460 440 420 – NLO - NLO 380 380 - NNLO – NNLO 360 360 0.24 0.14 0.16 0.18 0.22 0.16 0.2 0.22 0.24 0.14 0.18

• pion mass dependence of $a_{\mu}^{\text{HVP}}[\pi\pi, \leq 1 \text{ GeV}]$

[Colangelo, Hoferichter, Kubis, Niehus, JRE (2021)]

 M_{π} [GeV]

 \hookrightarrow stable results, pion-mass dependence of 2π under control

 M_{π} [GeV]

[Golterman, Maltman, Peris (2017)]

• chiral LECs as fit parameters:

- \triangleright describes $\pi\pi$ physics
- ho need to add $a_{\mu}^{\text{HVP}}[ud, I = 1, \text{non} \pi\pi] = \xi + M_{\pi}\psi$

 \triangleright can provide independent constraints from other lattice calculations: $\delta_1^1(s)$, F_{π}^V , $r_{\nu_1}^r$

- simple parameterizations:
 - possible for space-like integrand

$$\frac{\bar{\Pi}(-Q^2)}{Q^2} = \frac{a + bQ^2}{1 + cQ^2 + dQ^4},$$

 $\hookrightarrow \text{test infrared singularities}$

 \triangleright fits to {a, b, c, d} indicate singularity as strong as M_{π}^{-2} in [0.14, 0.25] GeV

$$f_1(M_\pi^2) = \frac{x}{M_\pi^2} + y + zM_\pi^2, \quad f_2(M_\pi^2) = \frac{x}{M_\pi^2} + y \log M_\pi^2 + z$$

 \hookrightarrow could help inform lattice fits

- analytic and compact results for $\pi\pi$ partial waves at two-loop order
 - variable as Mathematica notebook in arXiv submission 2009.04479
 - \hookrightarrow no need to stay at one-loop order anymore!
- new strategy for a stable NNLO IAM fit to lattice data
 - \hookrightarrow study of IAM convergence in M_{π}
- good fit quality requires good understanding of lattice artifacts
- application to the 2π contribution to the HVP
 - $\, \hookrightarrow \, \, \text{stable results} \,$
 - \hookrightarrow strategy to control chiral extrapolation of HVP

Spare slides

J. Ruiz de Elvira (UCM)

Chiral extrapolation of $\pi\pi$ and HVP

CD2024 16

ヘロト 人間 とくほとくほとう

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

$$G(s) = G(0) + sG'(0) + s^2G''(0) + \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} t(s')^{-1}}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\operatorname{Im} t(s')^{-1}}{s'^3(s'-s)}$$

-

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

$$G(s) = G(0) + sG'(0) + s^2G''(0) + \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} t(s')^{-1}}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\operatorname{Im} t(s')^{-1}}{s'^3(s'-s)}$$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

・ロト ・回 ト ・ ヨ ト ・ ヨ ト ・

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

$$G(s) = G(0) + sG'(0) + s^2G''(0) - \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\ln t_4(s')}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\ln t(s')^{-1}}{s'^3(s'-s)}$$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

・ロト ・回 ト ・ ヨ ト ・ ヨ ト ・

• dispersion relation for
$$G(s) = t_2(s)^2/t(s)$$

$$G(s) = G(0) + sG'(0) + s^2G''(0) - \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\ln t_4(s')}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\ln t(s')^{-1}}{s'^3(s'-s)}$$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s) |t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

글 에 세 글 에 ...

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

$$G(s) = t_2(0) - t_4(0) + s\left(t_2(0)' - t_4(0)'\right) - s^2 t_4(0)'' - \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} t_4(s')}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\operatorname{Im} t(s')^{-1}}{s'^3(s'-s)}$$

• unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

イロン イヨン イヨン -

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

$$G(s) = t_2(0) - t_4(0) + s\left(t_2(0)' - t_4(0)'\right) - s^2 t_4(0)'' - \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} t_4(s')}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\operatorname{Im} t(s')^{-1}}{s'^3(s'-s)}$$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

• LHC contribution: approximated in ChPT $\Rightarrow \operatorname{Im} G(s) \sim \operatorname{Im} t_2(s)^2/t(s)\Big|_{ChPT} = -\operatorname{Im} t_4(s)$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

$$G(s) = t_2(0) - t_4(0) + s\left(t_2(0)' - t_4(0)'\right) - s^2 t_4(0)'' - \frac{s^3}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\ln t_4(s')}{s'^3(s'-s)} - \frac{s^3}{\pi} \int_{-\infty}^{0} ds' \frac{\ln t_4(s')}{s'^3(s'-s)}$$

unitarity in the physical region

$$\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

• LHC contribution: approximated in ChPT $\Rightarrow \operatorname{Im} G(s) \sim \operatorname{Im} t_2(s)^2/t(s)\Big|_{ChPT} = -\operatorname{Im} t_4(s)$

イロン イヨン イヨン イヨン

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

 $G(s) = t_2(s) - t_4(s)$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

• LHC contribution: approximated in ChPT \Rightarrow Im $G(s) \sim \text{Im } t_2(s)^2/t(s) \Big|_{ChPT} = -\text{Im } t_4(s)$

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

 $G(s) = t_2(s) - t_4(s)$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

- LHC contribution: approximated in ChPT $\Rightarrow \text{Im } G(s) \sim \text{Im } t_2(s)^2/t(s)\Big|_{ChPT} = -\text{Im } t_4(s)$
- altogether:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

 $G(s) = t_2(s) - t_4(s)$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

- LHC contribution: approximated in ChPT $\Rightarrow \operatorname{Im} G(s) \sim \operatorname{Im} t_2(s)^2/t(s)\Big|_{ChPT} = -\operatorname{Im} t_4(s)$
- altogether:

$$t_{\sf NLO}^{I\!A\!M}(s) = rac{t_2(s)^2}{t_2(s) - t_4(s)}$$

[Truong, Herrero, Dobado (1990)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

 $G(s) = t_2(s) - t_4(s)$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

- LHC contribution: approximated in ChPT $\Rightarrow \operatorname{Im} G(s) \sim \operatorname{Im} t_2(s)^2/t(s)\Big|_{ChPT} = -\operatorname{Im} t_4(s)$
- altogether:

$$t_{\mathsf{NLO}}^{\mathsf{IAM}}(s) = \frac{t_2(s)^2}{t_2(s) - t_4(s)}, \quad t_{\mathsf{NNLO}}^{\mathsf{IAM}}(s) = \frac{t_2(s)^2}{t_2(s) - t_4(s) - t_6(s) + t_4(s)^2/t_2(s)}$$

[Truong, Herrero, Dobado (1990)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

• dispersion relation for $G(s) = t_2(s)^2/t(s)$

 $G(s) = t_2(s) - t_4(s)$

unitarity in the physical region

 $\operatorname{Im} t(s) = \sigma(s)|t(s)|^2 \quad \Rightarrow \quad \operatorname{Im} t^{-1}(s) = -\sigma(s), \quad \Rightarrow \quad \operatorname{Im} G(s) = -\operatorname{Im} t_4(s)$

subtraction constants: can be evaluated in ChPT

 $G(0) = t_2(0)/t(0) \simeq t_2(0) - t_4(0), \quad G'(0) \simeq t_2(0)' - t_4(0)', \quad G''(0) \simeq -t_4(0)''$

- LHC contribution: approximated in ChPT $\Rightarrow \operatorname{Im} G(s) \sim \operatorname{Im} t_2(s)^2/t(s)\Big|_{ChPT} = -\operatorname{Im} t_4(s)$
- altogether:

$$t_{\mathsf{NLO}}^{\mathsf{IAM}}(s) = \frac{t_2(s)^2}{t_2(s) - t_4(s)}, \quad t_{\mathsf{NNLO}}^{\mathsf{IAM}}(s) = \frac{t_2(s)^2}{t_2(s) - t_4(s) - t_6(s) + t_4(s)^2/t_2(s)}$$

[Truong, Herrero, Dobado (1990)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

satisfies exact unitarity + chiral low-energy expansion

b derived from a dispersion relation

J. Ruiz de Elvira (UCM)

Chiral extrapolation of $\pi \pi$ and HVP

The IAM and scattering data

[Gómez-Nicola, Pelaez (2002)]

• perturbative ChPT, IAM fit 1, IAM fit 2

• derived from a dispersion relation

 \hookrightarrow analytic continuation to the complex plane

• similar for the $f_0(980)$, $\kappa(700)$, $a_0(980)$

Possible application to lattice QCD

J. Ruiz de Elvira (UCM)