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Introduction

Other talks related to the muon anomalous magnetic moment
Gilberto Colangelo: Dispersive approach to hadronic contributions to the
Muon g − 2
Hartmut Wittig: The puzzles of the muon anomalous magnetic moment
Simon Holz: Dispersive determination of the eta/eta’ transition form factors
And many more related ones

Experimental measurement:

define the anomaly: aµ =
gµ − 2

2
aµ = 0.00116592059(22) or 1.9 · 10−7 (0.19 ppm)

gµ = 2.00233184118(44) or 2.2 · 10−10 (experimentalists are (too?) modest)

Can we calculate this to the same precision?
All theory uncertainties under sufficient control except for the hadronic
contributions



Hadron
Theory

Johan Bijnens

Introduction

HVP

HLbL

Short-distance

SD General

SD3: correct

SD2: MV

ME nonper-
turbative

Conclusions

3/35

Hadronic contributions

LO-HVP HLbL
Muon and photon lines, representative diagrams
The blobs are hadronic contributions
There are higher order contributions of both types: known accurately enough
aHVP
µ = 6845(40) 10−11 (LO+NLO+NNLO)(White paper; error has increased)

aHLbL
µ = 92(18) 10−11 (LO+NLO)(White paper)

aexp
µ − aQED

µ − aEW
µ = 7186(22) · 10−11

Difference: ∆aµ = 249(49) · 10−11
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HVP

= Two-point function of two electro-magnetic currents Π

Integrate over a weight function
Can do that in:

Minkowski momentum space (dispersive approach)
Euclidean momentum space (early lattice QCD and MUonE)
Euclidean space (in principle lattice QCD)
Time-momentum representation (mixed; present lattice QCD)

These are all related due to the analyticity property of two-point functions
Simple: only one variable
Problem: need 0.3% precision to match experimental aµ
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HVP: status

175 180 185 190 195 200 205 210 215

aµ × 1010 − 11659000

Tau

KLOE

CMD-3

BaBar

White paper

BMW ’20

This work

Experimental avg.

FNAL 2023

BNL 2006

0.9σ

4.0σ

5.2σ

Source: BMW24, arXiv:2407.10913

All other numbers taken
from white-paper
HLBL = 92(18)
Details: talks this morning
I will not further comment
on this but lots of ongoing
work
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HLbL: Hadronic light-by-light

q1↗ q2↑ q3↖

q4↑

↖q3

↗q2q1↖

q4↙

=Πµνλσ(q1, q2, q3) of four vector currents (not two)
6 variables (not just one)

Actually we really need δΠµνλσ(q1, q2, q3)

δq4ρ

∣∣∣∣
q4=0

Mixed: q4 at zero, q2
1, q2

2, q2
3 so three-variables, or Q2

1 ,Q2
2 ,Q2

3 (q2
i = −Q2

i )
Models, Dispersive methods, Lattice QCD



Hadron
Theory

Johan Bijnens

Introduction

HVP

HLbL
Dispersive

Lattice

Short-distance

SD General

SD3: correct

SD2: MV

ME nonper-
turbative

Conclusions

7/35

HLbL dispersive history

late 1990s: two groups (Kinoshita, Bijnens); models and physics sense: 83(32)
(BPP) after counting proposed by de Rafael
Lots of work on the single pion exchange 2000-2015 (Knecht, Nyffeler,…)
Start of connection with QCD (Melnikov, Vainshtein 2003)
Always a problem of separating contributions
Breakthough in 2015: how to do dispersive consistently (Colangelo,…)
Also connection to short-distance major progress (Bijnens,
Hermansson-Truedsson, Rodriguez-Sanchez)
Main remaining: 3 pion and medium mass resonances: much work in progress
Comment: numbers consistent over many years but errors on much better
footing now
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Contributions HLbL White paper

“Long distance”: under good control
Dispersive method: Berne group around G. Colangelo
π0 (and η, η′) pole: 93.8(4.0) · 10−11 (BPP 85(13))
Pion and kaon box (pure): −16.4(2) · 10−11

ππ-rescattering (include scalars below 1 GeV):−8(1) · 10−11

Charm (beauty, top) loop: 3(1) · 10−11

“Short and medium distance” Main source of the error
Scalars, tensors: −1(3) · 10−11

Axial vector: 6(6) · 10−11

Short-distance: 15(10) · 10−11

aHLbL
µ = 92(19) · 10−11

Since then:
Short distance constraints improved (this talk)
Axial vectors better understood
Work in progress to put all together better
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HLbL Lattice QCD

Eur.Phys.J.C 81 (2021) 651

Three independent groups (similar methods), latest results
RBC/UKQCD 23 124.7(14.9) · 10−11

Mainz 21/22 109.6(15.9) · 10−11

BMW preliminary 126.8(13) · 10−11

Dispersive 92(19) · 10−11

Other lattice methods: calculate formfactors needed in the dispersive method
π0, η → γ∗γ∗
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What are we up against?

Lots of resonances in light meson table from PDG (2022) 1-1.5 GeV

φ(1020) h1(1170) b1(1235) a1(1260) f2(1270)
f1(1285) η(1295) π(1300) a2(1320) f0(1370)
π1(1400) η(1405) h1(1415) f1(1420) ω(1420)
a0(1450) ρ(1450) η(1475) f0(1500) . . .

couplings to on-shell photons known for very few
off-shell photons (q2

i 6= 0) even less
Clearly we will need to go beyond data as it is now
More data will always be useful as a constraint and we will still need
improvement around 1 GeV
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Definitions

q1↗ q2↑ q3↖

q4↓

↖q3

↙q2q1↘

q4↗

= Πµνλσ(q1, q2, q3)

Actually we really need δΠµνλσ(q1, q2, q3)

δq4ρ

∣∣∣∣
q4=0

Never purely short-distance: q4 at zero
q2

i = −Q2
i
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Definitions

Πµνλσ = −i
∫

d4xd4yd4ze−i(q1·x+q2·y+q3·z)
〈

T
(

jµ(x)jν(y)jλ(z)jσ(0)
)〉

Use the Colangelo et al. 2017 conventions (mainly)

Πµνλσ =
54∑

i=1
Tµνλσ

i Π̂i ,
δΠµνλσ

δq4ρ

∣∣∣∣
q4=0

=
54∑

i=1

δTµνλσ
i

δq4ρ
Π̂i

∣∣∣∣∣
q4=0

=
19∑

i=1
Pµνλσρ

i Π̃i

aµ =
2α3

3π2

∫ ∞

0
dQ1dQ2Q3

1 Q3
2

∫ 1

−1
dτ

√
1− τ2

12∑
i=1

T̂i (Q1,Q2, τ) Πi (Q1,Q2, τ)

Q2
3 = Q2

1 + Q2
2 + 2Q1Q2τ

The 12 Πi from Π̂i for i = 1, 4, 7, 17, 39, 54
These can in turn be derived from five of the Π̃i
But beware of keeping the permutations when doing approximations
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Short-distance constraints

There are very many different types of short-distance constraints (SDC)
Those on hadronic properties

Couplings of hadrons to off-shell photons
Pure OPE (e.g. π0 → γ∗γ∗ at Q2

1 = Q2
2 )

Brodsky-Lepage-Radyushkin-· · · :
the overall power is very well predicted (counting rules)
the coefficient follows from the asymptotic wave functions and possible αS
corrections: larger uncertainty

Light-cone QCD sum rules
· · ·

This type is mainly used in HLbL to put constraints on the form-factors in the
individual contributions



Hadron
Theory

Johan Bijnens

Introduction

HVP

HLbL

Short-distance

SD General

SD3: correct

SD2: MV

ME nonper-
turbative

Conclusions

14/35

Short-distance constraints

On the full four-point function (4, 3 or 2 currents close)
SD4: Πµνλσ(q1, q2, q3) all Qi · Qj large: the standard OPE

SD3: δΠµνλσ(q1, q2, q3)

δq4ρ

∣∣∣∣
q4=0

with Q2
1 ∼ Q2

2 ∼ Q2
3 � Λ2

QCD

JB,LL,NHT,ARS 19-21

SD2: δΠµνλσ(q1, q2, q3)

δq4ρ

∣∣∣∣
q4=0

and Q2
1 ∼ Q2

2 � Q2
3 (� Λ2

QCD)

Melnikov-Vainshtein 03, JB, NHT, ARS 21-23

Collaborators: Nils Hermansson-Truedsson, Laetitia Laub, Antonio Rodríguez-Sánchez
SD3:

Phys.Lett. B798 (2019) 134994 [arxiv:1908.03331]: principle, next nonperturbative term
JHEP 10 (2020) 203 [arxiv:2008.13487]: proper description and up to NNLO
nonperturbative terms
JHEP 04 (2021) 240 [arxiv:2101.09169]: perturbative correction

SD2: JHEP 02 (2023) 167 [arxiv:2211.17183]: OPE in MV at αS = 0
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Short-distance: correctly

Similar problem in QCD sum rules for electromagnetic radii and magnetic
moments
Ioffe, Smilga, Balitsky, Yung, 1983

For the q4-leg use a constant background field and do the OPE in the
presence of that constant background field
Use radial gauge: Aλ

4(w) = 1
2wµFµλ

whole calculation is immediately with q4 = 0.
First term is exactly the massless quark loop
(quark masses: next order)

⊗
“q4”

q1 q2

q3

p

3 quark currents close
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Results for SD3

First part along in white paper Phys.Lett. B798 (2019) 134994 [arxiv:1908.03331]

SD3 work reported in previous Chiral Dynamics meeting
Leading term is the naive massless quark-loop
(not true for quark mass corrections)
Known fully analyticallly for pure quark loop and gluonic corrections
JHEP 10 (2020) 203 [arxiv:2008.13487], JHEP 04 (2021) 240 [arxiv:2101.09169]

Higher order terms in the OPE known and are small for Qi ≥ 1 GeV JHEP 10
(2020) 203 [arxiv:2008.13487]
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Perturbative corrections: numerics

 0

 5x10-11

 1x10-10

 1.5x10-10

 2x10-10

 1  1.5  2  2.5  3  3.5  4

a
µ

Qmin (GeV)

NLO
LO

Uncertainty estimated by αS(µ) with Qmin/
√

2 ≤ µ ≤
√

2Qmin
Running αS(MZ ) at 5 loops to αS(mτ ) or αS(µ)
Perturbative corrections are under control and negative, about −10%
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SD2 or MV short-distance

K. Melnikov, A. Vainshtein, Phys. Rev. D70 (2004) 113006. [hep-ph/0312226]
take Q2

1 ≈ Q2
2 � Q2

3 : Leading term in OPE of two vector currents is
proportional to axial current

Πρναβ ∝ Pρ

Q2
1
〈0|T

(
Jν

AJα
V Jβ

V

)
|0〉 JA comes from

+
Coefficient of JA has αS and higher order OPE corrections
AVV triangle anomaly: in particular nonrenormalization theorems

fully for longitudinal (Πi , i = 1, 2, 3)
perturbative for the others

Recent discusions, implementations,…: M. Knecht, JHEP 08 (2020) 056 [2005.09929],
P. Masjuan, P. Roig and P. Sanchez-Puertas, J. Phys. G 49 (2022) no.1, 015002 [2005.11761]
Colangelo et al, JHEP 03 (2020) 101 [1910.13432], Eur.Phys.J.C 81 (2021) 8, 702 [2106.13222],
Melnikov and Vainshtein, [1911.05874], L. Cappiello et al., Phys. Rev. D 102 (2020) no.1, 016009
[1912.02779], J. Leutgeb and A. Rebhan, Phys. Rev. D 104 (2021) 094017 [2108.12345] J. Lüdtke
and M. Procura, Eur. Phys. J. C 80 (2020) no.12, 1108 [2006.00007],…
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SD2, MV and corner

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

Q
2/

Λ

Q1/Λ

inside
side

corner
μ

corner
side

Q3 smallQ1 small

Q2 small

SD2
MV
Corner
All refer to the same kinematics
Corner comes from the triangle at
fixed Q1 + Q2 + Q3 = Λ

There might be regions where both
SD2 and SD3 are applicable
Corners:
Orange=perturbative
White=nonperturbative



Hadron
Theory

Johan Bijnens

Introduction

HVP

HLbL

Short-distance

SD General

SD3: correct

SD2: MV
ME perturbative

ME nonper-
turbative

Conclusions

20/35

MV Short-distance: known before

Before only a proper prediction for Π̂1 Colangelo et al, JHEP 03 (2020) 101 [1910.13432],
Eur.Phys.J.C 81 (2021) 8, 702 [2106.13222]

Q3 = Q1 + Q2, Q3 � Q1,Q2

Π̂1 =
e4

q
π2
−12

Q2
3 Q2

3

(
1− αS

π

)
The quark loop and its gluonic correction reproduce this
JB,NHT,ARS,JHEP 02 (2023) 167 [arxiv:2211.17183] and in progress: calculate the
corrections: gluonic and OPE
Next term in OPE has a number of features (from our corner expansions of
the masless case):

log
Q2

3

Q2
3

show up already at αS = 0 (now understood in the OPE picture)

For some of the terms the gluonic corrections dominate
Should allow to resum some of the large corrections at the corners
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Starting point

We define:
Πµ1µ2 =

i
e2

∫
d4x1

∫
d4x2e−i(q1x1+q2x2)〈0|T (Jµ1(x1)Jµ2(x2))|γ(q3)γ(q4)〉

allows to get the four point function needed for aµ: Πµ1µ2 = εµ3εν4Π
µ1µ2µ3ν4 .

and the needed ∂/∂q4,µ4 at q4 → 0 as well
OPE on the two currents: work out∫

d4x1

∫
d4x2e−i(q1x1+q2x2)T (Jµ1(x1)Jµ2(x2))

for q̂ = (q1 − q2)/2 with Q̂2 = −q̂ large, q3 = −q1 − q2 is small.
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First result

Look at the diagram and add q1 ↔ q2:

↘ q1 q2 ↙

p2 ↖↗ p1
expanding in q̂ gives

Πµ1µ2
q̄q ≈ −

e2
q

e2
−q̂α

q̂2 〈0|q̄(0)[γ
µ1γαγµ2 − γµ2γαγµ1 ]q(0))|γ(q3)γ(q4)〉

−
ie2

q
e2q̂2 (gµ1δgµ2β + gµ2δgµ1β − gµ1µ2gδβ)

×
(

gαδ − 2 q̂δq̂α

q̂2

)
〈0|q̄(0)(−→D α −

←−D α)γβq(0))|γ(q3)γ(q4)〉

First line D = 3, next lines line D = 4
Need more D = 4 terms: various combinations of FµνFαβ and GµνGαβ
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Where do these come from?

Comes from limit q3, q4 → 0 using background gauge of:

q4q1

q2 q3

and the same diagram with the low-energy legs replaced by gluons
Gives:

Oµ1µ2 =
8
q̂2 Fµ1γFµ2δq̂γ q̂δ −

16
3q̂6 q̂µ1 q̂µ2FαγFαδq̂γ q̂δ

+

(
−32

3 +
16
3 B(q̂2)

)(
1
q̂2 Fµ1αFµ2

α +
1
q̂4 Fµ1αFαβ q̂µ2 q̂β +

1
q̂4 Fµ2αFαβ q̂µ1 q̂β

)
+

(
−8

3 +
8
3B(q̂2)

)(
2
q̂4 FαγFαδq̂δq̂γgµ1µ2 +

1
q̂4 FαβFαβ q̂µ1 q̂µ2 − 1

q̂2 FαβFαβgµ1µ2

)
and a similar expression with gluon field strengths

with B(q̂2) = 2
ε̄ + 2− log(q̂2)



Hadron
Theory

Johan Bijnens

Introduction

HVP

HLbL

Short-distance

SD General

SD3: correct

SD2: MV
ME perturbative

ME nonper-
turbative

Conclusions

24/35

Gluonic corrections

limq4→0
∂

∂q4,µ4
〈0|Oi |γ(q3)γ(q4)〉

Calculation at µ = Q̂
Gluonic corrections add one more operator (and changes coefficients of the
others)
D = 3: q̂αq̄(0)[γµ1γαγµ2 − γµ2γαγµ1 ]q(0)
D = 4:

Oαβ
1 = q̄(0)(−→D α −

←−D α)γβq(0))
O2 = FαγFβ

γ

O3 = FγδFγδgαβ

O4 = GαγGβ
γ

O5 = GγδGγδgαβ

O6 = q̄(0)
(
γαγβγγ + γγγβγα

)
(
−→D γ +

←−D γ) q(0)
All (Wilson) coefficients known analytically and function of log(q̂2/µ2)

O6 can be removed using equations of motion in terms of O1
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Next step (in progress)

Use RGE to run down to µ = Q3

O1 and FµνFαβ mix via (q3, q4 → 0)
⊗

q3 q4

Oi

Take matrix elements from the D = 3 and D = 4 quark/gluon operators to e2

and FµνFαβ to e0 (now not q3 → 0 as in the step at µ = Q̂) at the low scale
For the moment we calculate the matrix elements at µ = Q̂
The full result is of course µ independent
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Matrix elements

We now have limq4→0(∂/∂q4,µ4)Π
µ1µ2µ3ν4 to two powers in q̂

Note gauge invariance for q3 exact
q4 → 0 gauge invariance is antisymmetry in ν4µ4

BUT gauge invariance for q1, q2 only perturbatively in q̂
Consequence: be careful when using gauge equivalent expressions
In particular when using projectors to get quantities without Lorentz indices
(our intermediate Π̃ or the Π̂i) need to use the projectors with lowest powers
of q̂ possible



Hadron
Theory

Johan Bijnens

Introduction

HVP

HLbL

Short-distance

SD General

SD3: correct

SD2: MV
ME perturbative

ME nonper-
turbative

Conclusions

27/35

Perturbative matrix elements

D = 3 reproduce that only in Π̂1 in the corner with Q3 small there is a
contribution (not in Q1 or Q2 small)
D = 4:

Matrix elements of the operators still contain kinematical singularities:

(Q3 small; δ12 = Q1 − Q2 small): Π̂7(O1) =
32δ12Q2

3

3π2(Q2
3 − δ2

21)Q
5
3

Similar for other Π̂i and
When projecting on Π̂i : need to be very careful with powers in q̂
Gauge invariance in q3 fully correct
Gauge invariance in q1, q2 only correct perturbative in 1/q̂
Use projectors with as low powers of q̂ as possible

D = 3 and D = 4 mix because of q̂ powers in the projectors
In the end: UV and kinematic singularities cancel when all contributions are
added also including gluonic corrections
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Results

Q3 = Q1 + Q2, Q2 = Q1 + Q3

Corner with q3 small:

Π̂1 = − 4
π2 Q2

3 Q2
3

+O
(

Q−4
3

)
Π̂4 = − 16

3π2 Q4
3

+O
(

Q−5
3

)
Π̂7 = O

(
Q−6

3

)
Π̂17 =

16
3π2 Q2

3 Q4
3

+O
(

Q−5
3

)
Π̂39 =

16
3π2 Q2

3 Q4
3

+O
(

Q−5
3

)
Π̂54 = O

(
Q−5

3

)

Corner with q2 small

Π̂1 = −
16

(
5 + 6 log 2 Q2

Q2

)
9π2 Q4

2

+O
(

Q−5
2

)
Π̂4 = − 4

3π2 Q2
2 Q2

2

+O
(

Q−3
2

)
Π̂7 = − 16

3π2 Q2
2 Q4

2

+O
(

Q−5
2

)
Π̂17 = O

(
Q−5

2

)
Π̂39 =

16
3π2 Q2

2 Q4
2

+O
(

Q−5
2

)
Π̂54 = − 8

3π2 Q2
2 Q4

2

+O
(

Q−5
2

)
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Results perturbative matrix elements

Q1 = Q2 + Q3
Corner with q1 small

Π̂1 = −
16

(
5 + 6 log 2 Q1

Q1

)
9π2 Q4

1

+O
(

Q−5
1

)
Π̂4 = − 4

3π2 Q2
1 Q2

1

+O
(

Q−3
1

)
Π̂7 = O

(
Q−4

1

)
Π̂17 = O

(
Q−5

1

)
Π̂39 =

16
3π2 Q2

1 Q4
1

+O
(

Q−5
1

)
Π̂54 =

8
3π2 Q2

1 Q4
1

+O
(

Q−5
1

)

Agrees with quark loop expansion

Gluon corrections are known (not RGE
yet) and agree with the expansion form
previous work

Higher orders can depend on
δ23 = Q2 − Q3,…
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Nonperturbative matrix elements

Look at more general Q3, no longer Q2
3 � Λ2

QCD
We cannot directly calculate all required matrix elements
We know they can only depend on q3
Parametrize the matrix elements in the most general way
D = 3 operator has two form-factors wL(q2

3) and qT (q2
3)

lim
q4→0

∂Πµ1µ2µ3ν4

∂q4, µ4
=

1
2π2

q2
3

q̂2 εµ1µ2q̂δ
(
εµ3µ4ν4δ ωT (q2

3)−
1
q2

3
εq3µ4ν4δ q3µ3 ωT (q2

3)

+
1
q2

3
εµ3µ4ν4q3 q3δ

[
ωL(q2

3)− ωT (q2
3)
] )

.

Full agreement with MV (and the other discussions)
Leading contribution: (only for q3 small)

Π̂1 =
2

π2Q2
3
ωL(q2

3)
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Nonperturbative matrix elements

The D = 3 operator gives contributions at the next order in 1/q̂
q3 small:

Π̂17 = − 4Q2
3

π2(Q2
3 − δ2

12)Q
4
3

ωT (q2
3)

Π̂39 = − 4Q2
3

π2(Q2
3 − δ2

12)Q
4
3

ωT (q2
3)

q1 small:
Π̂4 =

Q2
1

π2(Q2
1 − δ2

23)Q
2
1

ωT (q2
1)

Π̂7 = − 4Q2
1δ23

π2(Q2
1 − δ2

23)Q
3
1

ωT (q2
1)

Π̂39 = − 4Q2
1

π2(Q2
1 − δ2

23)Q
4
1

ωT (q2
1)

Π̂54 = − 4Q2
1

π2(Q2
1 − δ2

23)Q
4
1

ωT (q2
1)

q2 small:

Π̂4 =
Q2

2

π2(Q2
2 − δ2

31)Q
2
2
ωT (q2

2)

Π̂7 =
4Q2

2

π2(Q2
2 − δ2

31)Q
4
2
ωT (q2

2)

Π̂39 = − 4Q2
2

π2(Q2
2 − δ2

31)Q
4
2
ωT (q2

2)

Π̂54 =
4Q2

2

π2(Q2
2 − δ2

31)Q
4
2
ωT (q2

2)
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Nonperturbative matrix elements

The D = 3 operator gives contributions at the next order as well
These have kinematical singularities
The D = 4 operators contribute at this level as well
The sum of all contributions cannot have kinematical singularities
Leads to relations of the matrix elements between different operators
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Nonperturbative matrix elements

Oαβ
1 = q̄(0)(

−→
D α −

←−
D α)γβq(0)

∂
∂q4ν4
〈0|Oαβ

1 |γµ3(q3)γ
µ4(q4)〉

∣∣∣
q4=0

has six form-factors

We find three relations for these

ωD,2
(8) = −2ωD,1

(8) + ωD,5
(8) −

ωD,6
(8)
2 −

ωT ,(8)Q2
i

8π2 ,

ωD,3
(8) = −2ωD,1

(8) + ωD,5
(8) −

ωD,6
(8)
2 +

ωT ,(8)Q2
i

8π2 ,

ωD,4
(8) = ωD,5

(8)

Models for the form-factors should satisfy these
Using these get expressions for the Π̂i in terms of all the form-factors
Can be found in JHEP 02 (2023) 167 [arxiv:2211.17183]
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Nonperturbative matrix elements

Work in progress:
Phenomenological estimates of these form-factors
Get a numerical estimate of the D = 4 contributions
Complete the RGE running
Put all together for an updated short-distance contribution to HLbL
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Conclusions

SD3 or all Qi large
Massless quark loop is first term of a proper OPE expansion for HLbL
We have shown how to properly go to higher orders
We have calculated the next two terms in the OPE
Numerically not relevant at the present precision
Gluonic corrections about −10%

SD2 or MV or two Qi large and the third much smaller
We have shown how to do an OPE and worked out the first two terms
Leading term full agreement with MV
Gluonic corrections calculated
Perturbative matrix elements: agreement with limits from SD3
Kinematic singularities require relations between form-factors of NLO and LO
operators

Why do this:
use QCD to identify poissibly large missing parts
match sum hadronic contributions to QCD at short distances
Finding the onset of the asymptotic domain
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