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Testing Chiral Perturbation Theory with

Polarizabilities

= How good are our low Q2 effective theories of QCD? We need data
benchmarks to check...

= ¥xPT and other theoretical calculations can be directly compared to
data for Spin Polarizabilities

= Polarizabilities describe a nucleon’s ensemble response to an external
field

= Spin Polarizabilities can be accessed with sum rule integrals of Spin
Structure Functions experimentally measured with

Proton




Spin Structure Functions

= [n unpolarized systems, the inclusive electron scattering cross section can be written with
F, and F, structure functions describing the internal dynamics of a nucleon:
d*c
dQMdE’

1 2 0
= OMott |:;F2($, Q2) + MFI (33, Qg)taﬂzgl

" In a spin-% polarized system, two additional structure functions describe the spin structure of the
nucleon:
d?c*

= OMott [aFl(w,Qz)JrﬁFz(x,Q +yg:1(x,Q%) £ dg2(x Q2

Mostly from longitudinal polarization Mostly from transverse polarization

Moments of g1 and g, are one of the best options to test effective theories!




Moments & Polarizabilities

Super-convergence Sum Rules
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Gerasimov-Drell-Hearn Sum Rule

1
{Iﬂz(Qz) = J 92(x, Q*)dx = } Burkhardt-Cottingham Sum Rule
Polarizabilities & Higher Moments
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Yo = x 2g1(x, Q%) + 02 g2(x,Q%)]dx|  Generalized Forward Spin Polarizability
d;, = x%[2g1(x, Q%) + 3g2(x, Q?)] dx] Color Polarizability / Twist-3 Matrix Element




Moments & Polarizabilities

Hyperfine Structure Contributions
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Thomas Jefferson National Accelerator Facility

= JefferSon Lab is a premier facility in Newport

News, VA, USA for electron scattering experiments

= 1400 Meter “Racetrack” Linear Accelerator with 4
experimental halls

= Spin polarized electron beam with energy
up to 12 GeV

= Current ranges from 50 nA — 85 uA

= Host to a number of completed experiments
measuring spin structure functions at low Q?:

E94-010 (Neutron, L/ |I)

EG1b (Proton, |[)

E97-110 [saGDH] (Neutron, L/ 1)

E08-027 [g2p] (Proton, 1)

E03-006/E06-017 [EGA4] (Proton/Neutron, |)




General Extraction Procedure

1.  Measure inclusively scattered polarized electrons off a longitudinally (||) or transversely (L)
polarized target

2. Compare + and — helicity counts for whichever target configurations were used and form
asymmetries:
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A = —— Ay = —
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3. Extract an unpolarized experimental cross section from the total counts:

2
L GO f (Or use world data for unpolarized part)
dQdE’ ~ Ny p(LT)e 40 AQAE'AZ

4. Combine into
AO'J_ = ZAJ_O'O AO'" = ZA"O'O

5. Extract spin structure functions from:

4a? E'? 4q® F' Q?
sin @ [vg, (x, Q%) — 2Eg,(v,Q?)] Aoy = Wf g1(x, Qz){E + E' €08 9} - 792(1’, Q%)
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~ MvQ? E




E94-010 Experiment

= Ranin 1998 in Hall A

Shower Counter

Pb-glass

= Polarized 3He Target used to
extract neutron structure
functions

= Scattered electrons measured
with Hall A High Resolution
Spectrometers |

O (GeV'ich)

Polarized Electron Beam

= Spins of the two protons in 3He l Do) Bl b s ™

Current: 15 microA

are antialigned in ground state,

0.01
0.50 1.00 1.50 2.00 2.50

so spin is dominated by the (o)
K. Slifer Ph.D. Thesis (2004)
neutron

= First look at intermediate to low Q? neutron spin structure!



E94-010 Results

M. Amarian et al., Phys. Rev. Lett. 93, 152301 (2008) M. Amarian et al., Phys. Rev. Lett. 92, 022301 (2004)
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oSLAC (res. + DIS estimate) —-— GDH sum rul
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SHERMES (res.+DIS) T MAID DIS estimate

= E94010 results disagreed with ¥PT at
low Q? at the time: “&; 1 Puzzle”

Y, (10 fm")

“boanio ’ . emmmmm —— = [, results found no B.C. Sum Rule
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2 o GDH slope and agree with Bernard et
5 —0.02 e n .
0 N T e al. calculation at low Q?2
0.005 .'r f v ; A
0 \—%
Q2 (GeVZ) 0 02 04 06 08 1 2Q1(Gev:f; 10




What about the proton?




EG1b Experiment

R. Fersch et al., Phys. Rev. C 96, 065208 (2017)

Jefferson Lab
CLAS Detector

= As for the proton, first low Q2 results from
JLab came from the EG1b experiment in
Hall B which ran in 2000-2001

= CLAS: A large acceptance spectrometer >

based on a six coil toroidal superconducting @

magnet D
107 £

“Longitudinally polarized solid Ammonia (NH,
or ND,) target

“Polarized with dynamic nuclear polarization

1.}-2 [

“Full results published in 2017/



EG1b Structure Function Results

| 0%=0.0266-0.0379 GeV* ___|

Q2:0.156-(']._2’2_3_G£\{25_\ - .

e L fae R &, o =g, measured directly over a very
=0 GY large range with excellent resolution
in Q?

"Primarily resonance region results
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R. Fersch et al., Phys. Rev. C 96, 065208 (2017)



EG1b Moment Results

R. Fersch et al., Phys. Rev. C 96, 065208 (2017)
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Can we go to even smaller Q2
with the ?




E97-110 Experiment (Small-Angle GDH)

= Neutron (3He) target with both

E97-110 Kinematics Coverage

longitudinal and transverse polarization TR GV 0 e
. H H % N 4 GeV, 9 Deg
through spin-exchange optical pumping & | sncvoue U Four
< | Diode
= Due to small scattering angle, covers )24 GeV 9 des Tuned
almost an order of magnitude lower in Q> "} 2s26evepe 795 m
than E94-010 [ 2.13GeV 6 deg
= Ran in Hall Ain 2003, published in Nature | "">¢V9¢ l. z 3
Physics in 2021 : \h 3 :
= Septum magnet allows small scattering '} N - Fickup Cols 2
angles down to 6 degrees with the Hall A : M6 deg, run 2 I r——
High Resolution Spectrometers T P TR
W (GeV)

V. Sulkosky Ph.D. Thesis (2007)




SmaH—Ang\e GDH Results (SSF

A. Deur Hadron24, Dalian,

China, 08/07/2024

0

’H}

ﬂ%

E = 1147 MeV, 9.03

== 'W"‘" PR O T s
eQlted

[ E=2234 MeV, 9.03 [ E=3775 MeV, 9.03 +
E = 4404 MeV, 9.03 +
o s, /
® g

E = 3319 MeV, 9.03

Il o, systematic
- g, systematic
- g, corelated systematic
- g, corelated syslemanc

000 W [Mev] 2000 1000

T500 vy [Mev] 2000 2500

= As before, assume proton
contributions cancel, so 3He
SSF are dominated by
Neutron

=g, and g, are approximately
equal and opposite




Small-Angle GDH — GDH Sum Rule

A. Deur low-Q 2023, 18 May 2023, courtesy J.P. Chen

~) _ .
2, R e
~ Bernardetal. (XEFT) @ .- 3 . .
:_I:-SO Lensky et al. (§(EFT)) A‘ ’ = Agrees with older data at high Q?
— Jietal A0 :
e MAID 2007 A = Agrees with the Lensky at al.
-100 . L,
- calculation only at high Q
G "Agrees with the Bernard et al.
"""" calculation only at lowest Q2
A E94-010 data *MAID does not agree with any of
A E94-010 data + extr. the new data
O E97-110 data
® E97-110 data + extr.
1
Q? (GeV?)



(10 fm*)

Oy

Small-Angle GDH Polarizabilities

V. Sulkosky et al., Nature Physics, Vol. 17 687-692 (2021)
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= New calculations explicitly including
the A(1232) resonance agree better
in the regime of E94-010!

= _..but the lower Q? achieved by E97-
110/Small-Angle GDH shows a
continuing disagreement for both

spin polarizabilities

* The Neutron’s “0 ;1 Puzzle” is alive
and well



Does the proton also have
the 6LT Puzzle?




g2p Experiment

= Ranin Hall Ain 2012

= Published results in Nature Physics in 2022

= First low Q2 g, measurement for the proton! 0 1y

= Transversely polarized solid NH, target

. 5
= Septa magnets allow small scattering angle =
. : [
= Chicane magnets compensate for target field
bending Soectomets \
= Covers QZ of Chicang Magnets Polizg e | o 1072} wem 23GeV,5T |
Beam Current Monitors ke %: - )3 GCV, 5L
0.01-0.12 1 Vs ) 5 mmm 34GeV,5T
G eV2 Fast Raster Beam Position Monitors ---"*-) 5 . ) | ! !
Slow Raster ) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22




o2p Results (SSF)

= g, results have good precision in the
resonance region

* Phenomenological models (Hall B,
MAID) agree well with the data over
most of the measured range

= The experiment’s one g, setting has
excellent precision and has data down
to the pion production threshold

91/9>

0.0

-9.5k
05}
0.0

-0.5F

= g, result stays negative while models
expect a small positive result near
threshold, but data is compatible with
a positive result within error bars

l

. U | 1 1 | | | 1 |
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
W(MeV)




6, (107% fm*)

g2p Results (0p7)

4+ 4 g2p Data
-+=  Hall B Model
MAID Model

2.0+

—— Alarcon et al.
Bernard et al.

0.0

0.02 0.04 0.06 0.08 0.10 0.12 0.14

Q (GeV?)

= §; 1 results agree very well with Alarcon et al.
prediction

= More significant tension with Bernard et al.
calculation

= Low Q? error bar is due to the strong 1/Q°
weighting in the moment

*No sign of a proton “d ;1 Puzzle”



g2p Results (d5)

£

—0.001 4 —— Alarcon et al. (xyPT)

A Gockeler et al. (Lattice) =
—0.0027 _._ maiD Model
—0.003 - 4 g2p Data

¢ RssData
—0.0044 @m SANE Data m
_0.005 ] @ SLACELSS Data

[ Osipenko et al.

—0.006 7 —T

10-1

10°
Q%(Gev?)

= Agrees very well with Alarcon et al. prediction
and phenomenological models

= At low Q?, the color definition drops out and
this is a “pure polarizability”

= Fully positive, in contrast to the negative SANE
result at higher Q?

= |deal observable to try and understand the full
Q? spectrum from the EFT regime to the pQCD
regime



0.04

0.02}

0.00 9

-0.02

—0.04| 44 g2p Measured

-0.06

102

g2p Results (I',)

— MAID Model
— Elastic
44 g2p Measured (Full Range)

<»<> g2p Measured + Elastic
I B RSS Measured
[ 1] | RSS Measured + Elastic
@ © SANE Measured

SANE Measured + Elastic

1 1
107 10° 10t

Q° (GeV*)

= Without the full integral, we can’t check B.C.
Sum Rule fulfillment...

= Higher Q2 experiments have used g,V to
estimate this part, but because it relies on the
assumption of Twist-2, it fails by this Q2

= |nstead, the data can be used to access the

unmeasurable low-x regime if B.C. Sum Rule is
assumed



g2p Results (I',)

0.04

= Without the full integral, we can’t check B.C.
Sum Rule fulfillment...

0.02}

0.00 9

= Higher Q2 experiments have used g,V to
estimate this part, but because it relies on the
assumption of Twist-2, it fails by this Q2

-0.02+

— MAID Model
— Elastic

44 g2p Measured (Full Range)

—D.DL** g2p Measured

<»<> g2p Measured + Elastic

= |nstead, the data can be used to access the

unmeasurable low-x regime if B.C. Sum Rule is
CIL] Rse Memsared + Erastc assumed

@ © SANE Measured
SANE Measured + Elastic

-0.06
102

107 10° 10t

Q° (GeV*)



We also need proton g,
results at this same Q-3...




EG4 Experiment

“Builds on EG1 by going to very low -, R

Q% =0.01 GeV?

= Ran with CLAS Detector in Hall B in
2006

“Longitudinally polarized NH; and
ND, target

=Specialized Cerenkov detector
improved efficiency at forward
angles, allowing access to lower Q?

= Excellent precision longitudinal
results for both the proton and
neutron

= Proton results published in Nature
Physics in 2021

1

-1
10

<2
10 E=2.99 GeV

E=2.26 GeV
E=1.99 GeV
E=1.52 GeV
E=1.34 GeV
E=1.05GeV

-3

10 :

I 125 1.5 L7S 2 225 2.5 2.75 3 3.‘25
w

Electromagnetic

Calorimeters Large-angle

|~ Calorimeters

Cerenkov

Tungsten cone
support

Polarized Target
h

I \ Beam Position
Monitor

— |

Region 1,2, and 3
Drift Chambers

<=

Beam Direction

e

New Cerenkov 0 1 2 3 4
Counter in Sector 6 ; : - - {

TOF Scintillators

METERS

Courtesy X. Zheng

X. Zheng, March 2009, Spin Structure at Long Distance



FEG4 Results (SSF

A. Deur Hadron24, Dalian, China, 08/07/2024

g! vs W by Q2 Bin
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FG4 Results (GDH Sum) [Proton]

X. Zheng et al., Nature Physics 17, 736

~ 10¢ Thi k (full integral i
Ty 0100 This work (full integral) ; ; Th;: zgik Enlllea:;:e%ria)nge only) ) Agrees-w_ell with Alarcon et
- . 0.75 - al. prediction
008 | © This work (measured range only) 7 - = Abhrens et al (real photon)
Vo™ v Fersch et al. (full integral) ; C DH 1 .
S ) 05 - gemaf;‘:t‘;le = Better agreement with
0.06 - ernard et al. 025E N Bernard et al. calculation at
ce=s Alarcon et al. / . == Alarcon et al. B, |OW€St Qz
I GDH sl ! [ e Parameterization e ® : -
004l 77 slope J 0 F e O > °
- — Burkertetal Y . 8o = Seems to converge to the
00p [~ ocfferetal Vi : : I GDH Slope by the lowest Q2
B [ Parameterization e C ¢} —05 " R T of the data
i v 5 5 ; """""""""""" V- )
00 *’ B '_ 887 . EXtrapOIatlon to QZ =0
j ) RIS L £ \Ge gives
0021 N 1(0) =-0.798 + 0.042
; -1.25 compared to
~0.04 | g e | |SOH = -0.804
N TN [ . . o -
0 0.04 0.08 0.12 0.16 0.2 1.0 0004008 0.12 0.16 0.2 .
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EG4 Results (yq) [Proton]

X. Zheng et al., Nature Physics 17, 736-741 (2021)

1.0
TE - Parameterization o5 Bernard et al.
£ 05F ==== Alarcon et al.
05E- = Most of the range agrees well with Alarcon et al.
10k prediction
-15 o This work (full integral) = Lowest Q? point better agrees with Bernard et al.
20 o This work (measured range only) calculation
5 v Fersch et al. (full integral)
—2.5 - m Ahrens et al. (real photon)
300 /
35 ¢
: L | L | L | L | I | L L 1 L L
~0 070,04 0,08 0.12 0.16 0.2 1.0
Q*(GeV?)



FG4 Results [Neutron]

g7 vs W by Q? Bin

05FQ?=0017 | LQ? = 0.020 0?2 =0.024 Q% =0.029 Q% = 0.035 Q7 ﬁ 0.042 {

0.0

i TR Wi A s i Ll
-1.0 N ! i Al Al

|
o
w

= Neutron results are still preliminary

x | b N = Courtesy Darren Upton

Q% =0.292 Q?=0.348 |
+.T’+;“;.*W1:.,'é-¥?, + : iwl.ﬂ""{‘fl‘.ﬁ;ii
(s I A

" | '

*“Will be posted on Arxiv soon!
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_I Y
1.1 1.3 15 1.7 19 1.1 13 15 17 19 11 13 15 17 19 11 1.3 15 17 19 11 13 15 1'." 19 1.1 13 15 17 19

W (GeV)

A. Deur Hadron24, Dalian, China, 08/07/2024



EG4 Results (I';) [Neutron]

; X. Zheng et al.,
0.04 H =77 Alarcoén et al. ¢ JLab EG4 :
| 2289 Bornard ot al. 4 JLabEGID NatureI Physics, 17 736 (2021)
] Burkert-Toffe + JLab EGla V. Sulkosky et al.
0.02 - MAID A JLab E97-110 PLB 805 135428 (2020)
{ === Pasechnik et al. v JLab E94-010
1 —— Parameterization 4 SLACE143 A. Deur Hadron24, Dalian, China, 08/07/2024
i Courtesy D. Upton
0.0
] &ord
a, “0.02 - >N
] - i N
- ¢ "Good agreement with E97-110
-0.04 - %
" Decent agreement with both Bernard and Alarcon
-0.06 - calculations at low Q?, favors Alarcon calculation at higher
- @
-0.08 -

0.00 005 010 015 0.2 1.0
Q?% (GeV?)




EG4 Results (yg) [Neutron]

X. Zheng et al.,
Nature Physics, 17 736 (2021)

| s V. Sulkosky et al.
0.0 _ | Nature Physics, 17 687 (2021)

A. Deur Hadron24, Dalian, China, 08/07/2024
Courtesy D. Upton

= At high Q?, only agrees with EG1b (when considering
systematics)

PR (10~4fm?)

2o Alarcon et al.

- Bernard et al.

MAID (Ros) = At low Q?, agrees with Bernard et al. calculation, and

Y ;’fr;r;ztzrization disagrees with E97-110 and Alarcon et al. calculation
i a.
4.0 4 i # JLab EGlb

y A JLab E97-110

0.00 0.05 0.10 0.15 0.2 1.0

n2 rA— _xr




o2p / EG4 Hydrogen Hyperfine Splitting

= Hydrogen Hyperfine Splitting — one of the best-measured
Exdiws = —3 (82 + Dvccoit + Apoi) quantities in physics

= Theoretical uncertainty is a million times larger.... ®

= Upcoming searches at PSI and FAMU will need precise
guidance where to look for the HFS in Muonic Hydrogen!

I/ 1l Y Y

= Two-Photon Exchange effect dominates HFS uncertainty

=Polarizability effect dominates TPE contribution
uncertainty = need g, and g,



o2p / EG4 Hydrogen Hyperfine Splitting

Muonic Hydrogen (uH)

Q2(A; Integrand)

-1 4

0.0

—0.1 1
—-0.2 1
—0.3 1
—-0.4 1

Q2(A; Integrand)

—-0.5 -
—0.6 1

_07 T T
1073 1072 107! 100
Q? (GeV?)

—— Fit (Extrapolation) — - Hall B Model A EG4 Results
—— Fit (Unused) = = MAID Model B g2p Results

= Use Hall B model for the unmeasured low-x and high Q?
parts

= Fit the data to extrapolate to Q? =0

- = New result cuts the data-driven
uncertainty in half
cateon B = Reduces longstanding tension
) with ¥PT dramatically!
gt A = But, still some clear tension
R remains...
Bpor [HH] (ppm)



HFS Analysis — Zemach Radius

Courtesy F. Hagelstein = Using highly precise HFS measurement we can use
15 HFS H & choice of Ay (cf. Fig. 3) our 4,,; to get Ry:
Ruth et al. '24 (this work) —e— iz = 1'036(8) fm
Hagelstein et al. '23 (LO xPT)| | m Compqtlble with FF results and Lattice QCD
___________________________________ prediction
Lattice QCD
Djukanovic et al. '23| | . I
Thanks to HFS Analysis collaborators:
Proton Form Factors F. Hagelstein, V. Pascalutsa, C. Carlson
5 tll_m et a:' ﬂ . e A. Deur, S. Kuhn, X. Zheng, M. Ripani
IStier et al. .
K. Slifer, J.P. Chen
100 105
Rz [fm]



Transition Region g,p Proposal

PR12-24-002 Projected Uncertainties = Experiment to measure protpn g, from 0.22-
2.2 GeV? proposed to PAC52 in July 2024

0.015 4 =+ Hall B Model . . . . . .
B g2p Results = Will fill a major gap in g, spectrum, bridgin
L : 22 "
Y : TR esults the effective theory regime with the
0.010 - / L) *  SANE Results perturbative QCD regime
¢ \
~ \ - by PAC52!
0.005 A -
o \ 02 0.04 - —— Elastic Contribution
© i [ " MAID Model
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Sulkosky et al. Nature Physics. volume 17, pages687—692 (2021)

EG4 Proton Results (%1):
Zheng et al. Nature Physics. volume 17, pages736-741 (2021)

g2p Proton Results (g,):
Ruth et al. Nature Physics. volume 18, pages1441-1446 (2022)
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The stronginteraction is not well understood at low energies or for
interactions with low momentum transfer. Chiral perturbation theory gives
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|® Check for updates testable predictions for the nucleonic generalized polarizabilities, which are
fundamental quantities describing the nucleon’s response to an external
field. We report a measurement of the proton’s generalized spin
polarizabilities extracted with a polarized electron beam and a polarized
solidammonia target in the region where chiral perturbation theory is
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State of Comparisons to ¥PT

= ¥PT reproduces the data well sometimes and not as well other times

= Still some question on how the two cutting edge ¥PT calculations compare to each other

= Hydrogen HFS: Diminished but still significant tension between data and ¥PT

= §;7: No sign of “8 7 Puzzle” for proton, but the puzzle remains at the lowest Q% neutron data
*d,: No tension for proton

“I'y/GDH: Good agreement for proton, some tension for neutron

" Yo: Good agreement for proton, some tension for neutron



Conclusion

= ¥PT is doing a much better job with the proton than the neutron, though questions still remain
about the proton, especially the HFS

= Lattice QCD can also produce many of these quantities — this data provides a benchmark to check
these calculations when they are finished

= Lots of recently published high precision spin structure function and moment data out of JLab, with
more on the way

= SSF moments and polarizabilities provide a crucial benchmark for testing low Q? effective theories!

Thanks!
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