Low Q² Spin Structure Results from Jefferson Lab

DAVID RUTH CHIRAL DYNAMICS WORKSHOP 2024 8/30/24

Testing Chiral Perturbation Theory with Polarizabilities

How good are our low Q² effective theories of QCD? We need data benchmarks to check...

 χPT and other theoretical calculations can be directly compared to data for Spin Polarizabilities

Polarizabilities describe a nucleon's ensemble response to an external field

 Spin Polarizabilities can be accessed with sum rule integrals of Spin Structure Functions experimentally measured with Inclusive Electron Scattering

Spin Structure Functions

In unpolarized systems, the inclusive electron scattering cross section can be written with F₁ and F₂ structure functions describing the internal dynamics of a nucleon:

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$

In a spin-½ polarized system, two additional structure functions describe the spin structure of the nucleon:

Moments of g₁ and g₂ are one of the best options to test effective theories!

Moments & Polarizabilities

Super-convergence Sum Rules

$$\left(I_1(Q^2=0)=\frac{2M^2}{Q^2}\int_0^1 g_1(x,Q^2)dx=\frac{2\pi^2\alpha\kappa^2}{M^2}\right)$$

 $\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$

Gerasimov-Drell-Hearn Sum Rule

Burkhardt-Cottingham Sum Rule

Polarizabilities & Higher Moments

$$\delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} x^2 [g_1(x, Q^2) + g_2(x, Q^2)] dx$$

Transverse-Longitudinal Spin Polarizability

 $\left(\gamma_0 = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} x^2 g_1(x, Q^2) + \frac{4M^2 x^4}{Q^2} g_2(x, Q^2) \right] dx$

Generalized Forward Spin Polarizability

$$\overline{d_2} = \int_0^{x_{th}} x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

Color Polarizability / Twist-3 Matrix Element

Moments & Polarizabilities

Hyperfine Structure Contributions

$$\Delta_{1} = \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \left[\beta_{1}(\tau_{l})F_{2}^{2} + \frac{8M^{2}}{Q^{2}}\int_{0}^{x_{th}} \widetilde{\beta_{1}}(x, Q^{2})g_{1}(x, Q^{2})dx\right]$$

$$\Delta_2 = -24M^2 \int_0^\infty \frac{dQ^2}{Q^4} \int_0^{x_{th}} \widetilde{\beta_2}(x, Q^2) g_2(x, Q^2) dx$$

$$\Delta_{pol} = \frac{\alpha m_l}{2\pi (1+\kappa)M} (\Delta_1 + \Delta_2)$$

Dominating Source of Hydrogen Hyperfine Splitting Uncertainty!

Thomas Jefferson National Accelerator Facility

- Jefferson Lab is a premier facility in Newport News, VA, USA for electron scattering experiments
- 1400 Meter "Racetrack" Linear Accelerator with 4 experimental halls
- Spin polarized electron beam with energy up to 12 GeV
- Current ranges from 50 nA 85 uA
- Host to a number of completed experiments measuring spin structure functions at low Q²: E94-010 (Neutron, ⊥/ ||) EG1b (Proton, ||) E97-110 [saGDH] (Neutron, ⊥/ ||) E08-027 [g2p] (Proton, ⊥) E03-006/E06-017 [EG4] (Proton/Neutron, ||)

General Extraction Procedure

- Measure inclusively scattered polarized electrons off a longitudinally (||) or transversely (⊥) polarized target
- Compare + and helicity counts for whichever target configurations were used and form asymmetries:

$$A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}} \qquad \qquad A_{\parallel} = \frac{\sigma^{\uparrow \uparrow} - \sigma^{\downarrow \uparrow}}{\sigma^{\uparrow \uparrow} + \sigma^{\downarrow \uparrow}}$$

3. Extract an **unpolarized experimental cross section** from the total counts:

 $\frac{d^2\sigma}{d\Omega dE'} = \frac{(ps)N}{N_{in}\rho(LT)\epsilon_{det}} \frac{f}{\Delta\Omega\Delta E'\Delta Z}$ (Or use world data for unpolarized part)

4. Combine into **polarized cross section differences**:

 $\Delta \sigma_{\perp} = 2A_{\perp}\sigma_{0}$ $\Delta \sigma_{\parallel} = 2A_{\parallel}\sigma_{0}$ (EG4 directly measured these cross section differences)

5. Extract spin structure functions from:

$$\Delta \sigma_{\perp} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'^2}{E} \sin\theta \left[\nu g_1(x, Q^2) - 2Eg_2(\nu, Q^2)\right] \qquad \Delta \sigma_{\parallel} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} \left[g_1(x, Q^2) \{E + E'^{\cos\theta}\} - \frac{Q^2}{\nu} g_2(\nu, Q^2)\right]$$

E94-010 Experiment

- Ran in 1998 in Hall A
- Polarized ³He Target used to extract neutron structure functions
- Scattered electrons measured with Hall A High Resolution Spectrometers
- Spins of the two protons in ³He are antialigned in ground state, so spin is dominated by the neutron

First look at intermediate to low Q² neutron spin structure!

E94-010 Results

- δ_{LT} a benchmark test of χ PT due to insensitivity to $\Delta(1232)$ resonance
- E94010 results disagreed with **x**PT at low Q² at the time: " δ_{LT} Puzzle"
- Γ_2 results found no B.C. Sum Rule violation

10

5

 Γ_1 results seem to be converging to GDH slope and agree with Bernard et al. calculation at low Q^2

What about the **proton**?

EG1b Experiment

- As for the proton, first low Q² results from JLab came from the EG1b experiment in Hall B which ran in 2000-2001
- CLAS: A large acceptance spectrometer based on a six coil toroidal superconducting magnet
- Longitudinally polarized solid Ammonia (NH₃ or ND₃) target
- Polarized with dynamic nuclear polarization

•Full results published in 2017!

EG1b Structure Function Results

EG1b Moment Results

Can we go to even smaller Q² with the neutron?

E97-110 Experiment (Small-Angle GDH)

- Neutron (³He) target with both longitudinal and transverse polarization through spin-exchange optical pumping
- Due to small scattering angle, covers almost an order of magnitude lower in Q² than E94-010
- Ran in Hall A in 2003, published in Nature Physics in 2021
- Septum magnet allows small scattering angles down to 6 degrees with the Hall A High Resolution Spectrometers

Small-Angle GDH Results (SSF)

 As before, assume proton contributions cancel, so ³He SSF are dominated by Neutron

g₁ and g₂ are approximately equal and opposite

Small-Angle GDH – GDH Sum Rule

- Agrees with older data at high Q²
- Agrees with the Lensky at al. calculation <u>only</u> at high Q²
- Agrees with the Bernard et al.
 calculation <u>only</u> at lowest Q²
- MAID does not agree with any of the new data

Small-Angle GDH Polarizabilities

• New calculations explicitly including the $\Delta(1232)$ resonance agree better in the regime of E94-010!

 ...but the lower Q² achieved by E97-110/Small-Angle GDH shows a continuing disagreement for <u>both</u> spin polarizabilities

• The Neutron's " δ_{LT} Puzzle" is alive and well

Does the proton also have the δ_{LT} Puzzle?

g2p Experiment

Ran in Hall A in 2012

- Published results in Nature Physics in 2022
- First low Q² g₂ measurement for the **proton**!
- Transversely polarized solid NH₃ target

Beam Current Monitors

Slow Raster

Fast Raster

- Septa magnets allow small scattering angle
- Chicane magnets compensate for target field bending

Chicane Magnets

Beam Position Mo

Local Beam Dump

Spectromet

Polarized Target

g2p Results (SSF)

- g₂ results have good precision in the resonance region
- Phenomenological models (Hall B, MAID) agree well with the data over most of the measured range
- The experiment's one g₁ setting has excellent precision and has data down to the pion production threshold
- g₁ result stays negative while models expect a small positive result near threshold, but data is compatible with a positive result within error bars

g2p Results (δ_{LT})

- δ_{LT} results agree very well with Alarcon et al. prediction
- More significant tension with Bernard et al. calculation
- Low Q² error bar is due to the strong 1/Q⁶ weighting in the moment

•No sign of a proton " δ_{LT} Puzzle"

g2p Results (d_2)

- Agrees very well with Alarcon et al. prediction and phenomenological models
- At low Q², the color definition drops out and this is a "pure polarizability"
- Fully positive, in contrast to the negative SANE result at higher Q²
- Ideal observable to try and understand the full Q² spectrum from the EFT regime to the pQCD regime

g2p Results (Γ_2) 0.04 0.02 0.00 \diamond Γ_2 \triangleleft Ş -0.02 Ļ MAID Model Elastic g2p Measured (Full Range) g2p Measured g2p Measured + Elastic **RSS** Measured RSS Measured + Elastic SANE Measured SANE Measured + Elastic -0.06 10⁻² 10-1 10^{0} 10^{1} $Q^2 (GeV^2)$

Without the full integral, we can't check B.C.
 Sum Rule fulfillment...

- Higher Q² experiments have used g₂^{WW} to estimate this part, but because it relies on the assumption of Twist-2, it fails by this Q²
- Instead, the data can be used to access the unmeasurable low-x regime if B.C. Sum Rule is assumed

g2p Results (Γ_2) 0.04 0.02 MISSING 0.00 Low-x Part of Γ_2 Integral IF YOU HAVE ANY INFORMATION PLEASE CONTACT -0.02 Ļ MAID Model Elastic g2p Measured (Full Range) g2p Measured g2p Measured + Elastic RSS Measured RSS Measured + Elastic SANE Measured SANE Measured + Elastic -0.06 10⁻² 10⁻¹ 10^{0} 10^{1} $Q^2 (GeV^2)$

Without the full integral, we can't check B.C.
 Sum Rule fulfillment...

- Higher Q² experiments have used g₂^{WW} to estimate this part, but because it relies on the assumption of Twist-2, it fails by this Q²
- Instead, the data can be used to access the unmeasurable low-x regime if B.C. Sum Rule is assumed

We also need proton g_1 results at this same Q^2 ...

EG4 Experiment

- •Builds on EG1 by going to very low \bigcirc $Q^2 = 0.01 \text{ GeV}^2$
- Ran with CLAS Detector in Hall B in 2006
- Longitudinally polarized NH₃ and ND₃ target
- Specialized Cerenkov detector improved efficiency at forward angles, allowing access to lower Q²
- Excellent precision longitudinal results for both the proton and neutron
- Proton results published in Nature Physics in 2021

X. Zheng, March 2009, Spin Structure at Long Distance

EG4 Results (SSF)

A. Deur Hadron24, Dalian, China, 08/07/2024

EG4 Results (GDH Sum) [Proton]

EG4 Results (γ_0) [**Proton**]

X. Zheng et al., Nature Physics 17, 736-741 (2021)

- Most of the range agrees well with Alarcon et al. prediction
- Lowest Q² point better agrees with Bernard et al. calculation

EG4 Results [Neutron]

- Neutron results are still preliminary
- Courtesy Darren Upton

•Will be posted on Arxiv soon!

Decent agreement with both Bernard and Alarcon calculations at low Q², favors Alarcon calculation at higher

- At high Q², only agrees with EG1b (when considering systematics)
- At low Q², agrees with Bernard et al. calculation, and disagrees with E97-110 and Alarcon et al. calculation

g2p / EG4 Hydrogen Hyperfine Splitting

$$E_{nS-\text{HFS}}^{2\gamma} = \frac{E_{\text{F}}}{n^3} \left(\Delta_{\text{Z}} + \Delta_{\text{recoil}} + \Delta_{\text{pol}} \right)$$

- Hydrogen Hyperfine Splitting one of the best-measured quantities in physics
- Theoretical uncertainty is a million times larger.... 🛞
- Upcoming searches at PSI and FAMU will need precise guidance where to look for the HFS in Muonic Hydrogen!
- Two-Photon Exchange effect dominates HFS uncertainty

 Polarizability effect dominates TPE contribution uncertainty = need g₁ and g₂

g2p / EG4 Hydrogen Hyperfine Splitting

- Use Hall B model for the unmeasured low-x and high Q² parts
- Fit the data to extrapolate to Q² = 0

- New result cuts the data-driven uncertainty in half
- Reduces longstanding tension with χPT dramatically!
- But, still some clear tension remains...

HFS Analysis – Zemach Radius

 Using highly precise HFS measurement we can use our *A*_{pol} to get R_z:

 $R_{\rm Z} = 1.036(8)\,{\rm fm}$

Compatible with FF results and Lattice QCD prediction

Thanks to HFS Analysis collaborators:F. Hagelstein, V. Pascalutsa, C. CarlsonA. Deur, S. Kuhn, X. Zheng, M. RipaniK. Slifer, J.P. Chen

Transition Region g₂p Proposal

PR12-24-002 Projected Uncertainties

 Experiment to measure proton g₂ from 0.22-2.2 GeV² proposed to PAC52 in July 2024

 Will fill a major gap in g₂ spectrum, bridging the effective theory regime with the perturbative QCD regime

Conditionally Approved (C2) by PAC52!

Recent Publications

E97-110 Neutron Results (g₁ and g₂): Sulkosky et al. *Nature Physics.* volume 17, pages687–692 (2021)

EG4 Proton Results (g₁): <u>Zheng et al. *Nature Physics.* volume 17, pages736-741 (2021)</u>

g2p Proton Results (g₂):

Ruth et al. Nature Physics. volume 18, pages1441–1446 (2022)

g2p+EG4 Hyperfine Splitting Results:

Under Review at Physics Letters B...

arXiv:2406.18738

New Spin Structure Constraints on Hyperfine Splitting and Proton Size

David Ruth^{a,*}, Karl Slifer^a, Jian-Ping Chen^b, Carl E. Carlson^c, Franziska Hagelstein^{d,e,f}, Vladimir Pascalutsa^d, Alexandre Deur^b, Sebastian Kuhn^g, Marco Ripani^h, Xiaochao Zhengⁱ, Ryan Zielinski^a, Chao Gu^j

^a University of New Hampshire, 03824, Durham, New Hampshire, USA ^bThomas Jefferson National Accelerator Fucility, 26066, Newyort Neus, Virginia, USA ^cWilliam 66 Mary, 23187, Williamsburg, Virginia, USA ^dInstitute of Nuclear Physics, Johannes Gatenberg Universität Mainz, 55099, Mainz, Germany ^ePRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55099, Mainz, Germany nature physics

LETTER https://doi.org/10.1038/s41567-021-0124

Check for update

Measurement of the generalized spin polarizabilities of the neutron in the low-Q² region

Vincent Sulkosky^{1,2,3}, Chao Peng^{4,5}, Jian-ping Chen², Alexandre Deur ^{3,2,3}, Sergey Abrahamyan⁶, Konrad A. Aniol⁷, David S. Armstrong^{3,1}, Todd Averett¹, Stephanie L. Bailey¹, Arie Beck⁸,

ARTICLES https://doi.org/10.1038/s41567-021-01198-z

Measurement of the proton spin structure at long distances

X. Zheng¹, A. Deur¹, ¹²[™], H. Kang³, S. E. Kuhn¹, ⁴, M. Ripani⁵, J. Zhang¹, K. P. Adhikari^{2,4,6,50},
S. Adhikari⁷, M. J. Amaryan⁴, H. Atac⁸, H. Avakian², L. Barion⁹, M. Battaglieri^{2,5}, I. Bedlinskiy¹⁰,
F. Benmokhtar¹¹, A. Bianconi^{12,13}, A. S. Biselli¹⁴, S. Boiarinov², M. Bondi⁵, F. Bossù¹⁵, P. Bosted¹⁶,
W. J. Briscoe¹⁷, J. Brock², W. K. Brooks^{2,18}, D. Bulumulla⁴, V. D. Burkert², C. Carlin², D. S. Carman²,
J. C. Carvajal⁷, A. Celentano⁵, P. Chatagnon¹⁹, T. Chetry⁶, J.-P. Chen², S. Choi³, G. Ciullo^{9,20}, L. Clark²

nature physics

Article

https://doi.org/10.1038/s41567-022-01781-y

Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime

Received: 23 April 2022 Accepted: 2 September 2022

Check for updates

Published online: 13 October 2022

A list of authors and their affiliations appears at the end of the paper

The strong interaction is not well understood at low energies or for interactions with low momentum transfer. Chiral perturbation theory gives testable predictions for the nucleonic generalized polarizabilities, which are fundamental quantities describing the nucleon's response to an external field. We report a measurement of the proton's generalized spin polarizabilities extracted with a polarized electron beam and a polarized solid ammonia target in the region where chiral perturbation theory is expected to be valid. The investigated structure function g, characterizes

State of Comparisons to χ PT

- χ PT reproduces the data well sometimes and not as well other times
- Still some question on how the two cutting edge χ PT calculations compare to each other
- Hydrogen HFS: Diminished but still significant tension between data and χ PT
- δ_{LT} : No sign of " δ_{LT} Puzzle" for proton, but the puzzle remains at the lowest Q² neutron data
- d₂: No tension for proton
- **\Gamma_1/GDH**: Good agreement for proton, some tension for neutron
- γ_0 : Good agreement for proton, some tension for neutron

Conclusion

• χPT is doing a much better job with the proton than the neutron, though questions still remain about the proton, especially the HFS

- Lattice QCD can also produce many of these quantities this data provides a benchmark to check these calculations when they are finished
- Lots of recently published high precision spin structure function and moment data out of JLab, with more on the way
- SSF moments and polarizabilities provide a **crucial benchmark** for testing low Q² effective theories!

Thanks!