Nucleon form factors from lattice QCD

Sara Collins Universität Regensburg

11th International Workshop on Chiral Dynamics, RU Bochum, August 30th 2024

Nucleon form factors

Response of the nucleon to a probe:

Standard Model (γ, W^{\pm}, Z) or Beyond the Standard Model (??)

$$\langle N'(p')|\mathbf{J}|N(p)\rangle = \bar{u}_{N'}\sum_i \kappa_i \mathbf{G}_i(\mathbf{Q}^2)u_N$$

N', N = p, n. Local operator J = J(0). $\kappa_i = \kappa_i(\Gamma, p'_{\mu}, p_{\mu}).$

q = p' - p, space-like region $-q^2 = Q^2 > 0$.

Lattice QCD: (results shown here) work in isospin limit $m_u = m_d$.

Reduced number of form factors in the Lorentz decomposition.

Nucleon form factors: information that can be extracted.

Neutral currents:

$$\boldsymbol{J} = \boldsymbol{V}, \ \boldsymbol{G}_{E,M}^{p,n} \rightarrow \text{proton radius puzzle, } \boldsymbol{G}_{E,M}^{s}(Q^2) \rightarrow \text{parity-violating } \boldsymbol{ep} \\ \text{scattering experiments.}$$

J = A, $G_A^q(Q^2 = 0) = g_A^q \rightarrow$ first moment of the helicity parton distribution function (PDF) \rightarrow quark spin contribution to the spin of the nucleon.

J = T, $G_T^q(Q^2 = 0) \rightarrow$ first moment of the transversity PDF.

J = S, $m_q G_S^q (Q^2 = 0) \rightarrow$ nucleon sigma terms relevant for spin-independent WIMP-nucleon cross-section predictions.

 $\begin{aligned} \mathbf{J} &= \overline{\mathbf{q}} \gamma_{\{\mu} \overleftarrow{\mathbf{D}}_{\nu\}} \mathbf{q}, \text{ generalised form factors} \rightarrow \text{moments of generalised parton distribution} \\ \text{functions} &\rightarrow J_q = L_q + \frac{1}{2} g_A^q \text{ with } \frac{1}{2} = \frac{1}{2} \sum_q g_A^q + \sum_q L_q + J_g. \\ \text{Gravitational form factors.} \end{aligned}$

Charged weak currents:

J = A, $G_A(Q^2) \rightarrow$ input to predict the neutrino-nucleon scattering cross-section for long baseline neutrino oscillation experiments.

 $J = S, T, G_S(Q^2 = 0) = g_S$ and $G_T(Q^2 = 0) = g_T \rightarrow$ searching for BSM signals in precision β decay experiments.

Not an exhaustive list.

EM and axial nucleon form factors

Neutral currents $(p \rightarrow p, n \rightarrow n)$: $V^q_\mu = \bar{q}\gamma_\mu q$, $A^q_\mu = \bar{q}\gamma_\mu\gamma_5 q$ with $q \in \{u, d, s, \ldots\}$

$$\langle N(p')|V_{\mu}^{q}|N(p)\rangle = \bar{u}_{N}(p') \bigg[F_{1}^{q}(Q^{2})\gamma_{\mu} + \frac{F_{2}^{q}(Q^{2})}{2m_{N}}\sigma_{\mu\nu}Q^{\nu} \bigg] u_{N}(p)$$

$$\langle N(p')|A_{\mu}^{q}|N(p)\rangle = \bar{u}_{N}(p') \bigg[G_{A}^{q}(Q^{2})\gamma_{\mu} - i\frac{\tilde{G}_{P}^{q}(Q^{2})}{2m_{N}}Q_{\mu} \bigg] \gamma_{5}u_{N}(p)$$

Sachs ff.:

$$G_{E}^{q}(Q^{2}) = F_{1}^{q}(Q^{2}) - \frac{Q^{2}}{4m_{N}^{2}}F_{2}^{q}(Q^{2}), \quad G_{M}^{q}(Q^{2}) = F_{1}^{q}(Q^{2}) + F_{2}^{q}(Q^{2})$$

with $J_{\mu}^{em} = \sum_{q} e_{q} V_{\mu}^{q}$.

Charged currents $(n \rightarrow p)$: $\bar{u}\Gamma d$

Isospin limit $m_n = m_p$: $\langle p | \bar{u} \Gamma d | n \rangle = \langle p | \bar{u} \Gamma u - \bar{d} \Gamma d | p \rangle = \langle n | \bar{d} \Gamma d - \bar{u} \Gamma u | n \rangle$

Also: $\Gamma = \gamma_{\mu}$, $\langle p | \bar{u} \gamma_{\mu} d | n \rangle = \langle p | J_{\mu}^{em} | p \rangle - \langle n | J_{\mu}^{em} | n \rangle$ etc..

EM and axial nucleon form factors

Forward limit, $Q^2 = 0$:

EM (vector neutral) current:

Weak vector (charged) current: $G_E^{u-d}(0) = G_E^{p-n}(0) = 1$, $G_M^{u-d}(0) = G_M^{p-n}(0) = \mu^{p-n} = 4.70 \dots$

Axial (neutral) current: $G_A^q(0) = g_A^q$

ightarrow quark spin contribution to the spin of the nucleon $rac{1}{2}=rac{1}{2}\sum_{q}g_{A}^{q}+\sum_{q}L_{q}+J_{g}.$

Weak axial (charged) current: $G_A^{u-d}(0) \equiv G_A(0) = g_A^{u-d} \equiv g_A$

Shape at low Q^2 , $\langle r_X^2 \rangle = -\frac{6}{G_X(0)} \frac{dG_X(Q^2)}{dQ^2}$: different probe \rightarrow different radius.

$$G_X(Q^2) = G_X(0) \left[1 - \frac{1}{6} \langle r_X^2 \rangle Q^2 + \ldots \right] \qquad X = E, M, A, P$$

Exception: $\langle r_E^2 \rangle^n = -6 \frac{dG_E^n(Q^2)}{dQ^2}$

EM and axial nucleon form factors

Shape for larger Q^2 : at present lattice up to $\sim 1 \text{ GeV}^2$.

Phenomenological parameterisation:

e.g. dipole form, $G_A^{u-d}(Q^2) = G_A(Q^2) = g_A/(1+Q^2/M_A^2)^2$, $\langle r_A^2 \rangle = 12/M_A^2$.

Systematic approach: z-expansion [1008.4619,Hill,Paz].

$$G(Q^2) = \sum_{k=0}^{k_{max}} a_k z(Q^2)^k \qquad z(t,t_{cut},t_0) = rac{\sqrt{t_{cut}-t} - \sqrt{t_{cut}-t_0}}{\sqrt{t_{cut}-t} + \sqrt{t_{cut}-t_0}} \in \mathbb{R} \qquad t = -Q^2$$

Conformal mapping of the domain of analyticity onto the unit circle.

Polynomial expansion in z. Coefficients a_k are bounded in size, only a finite number are needed to describe the FF to a given precision.

Isospin symmetric limit: Isovector (u - d) combinations only connected quark-line diagrams. Isoscalar (u, d, s, c) also disconnected: Methods used introduce additional stochastic noise.

Steps in the analysis:

Fit
$$C_{3pt,\Gamma_i}^{\vec{p}',\vec{p},J}(t,\tau) = \sum_{n,m} Z_n Z_m^* e^{-E_{\vec{p}'}^n(t-\tau)} e^{-E_{\vec{p}}^m \cdot \langle \boldsymbol{n}(\vec{p}') | \boldsymbol{J} | \boldsymbol{m}(\vec{p}) \rangle} \stackrel{t,\tau \to \infty}{\longrightarrow}$$

 $\sim e^{-E_{\vec{p}'}(t-\tau)} e^{-E_{\vec{p}} \cdot \langle \boldsymbol{N}(\vec{p}') | \boldsymbol{J} | \boldsymbol{N}(\vec{p}) \rangle}.$

Renormalisation to match lattice matrix element to a continuum scheme.

Repeat analysis on several ensembles to explore

- Finite volume effects: exponentially suppressed $\sim e^{-LM_{\pi}}$, $LM_{\pi} > 4$.
- **Cut-off effects**: $\mathcal{O}(a)$ or $\mathcal{O}(a^2)$, larger for larger $|\vec{p}|$, $|\vec{p}'|$.
- Quark mass dependence: chiral pert. theory (ChPT) $M_{\pi} \rightarrow M_{\pi}^{phys}$.

Also need Q^2 parameterisation: dipole, z-expansion, ...

 $\overset{\rm Cost of HMC}{\propto 1/(a^{\geq 6} \ m_\pi^{\approx 7.5})}$

Challenges in the baryon sector

Lattice provides (very) precise results for (see [FLAG21,2111.09849]) $\alpha_s, m_q, q \in \{u/d, s, c, b\}, f_+^{K \to \pi \ell \nu}(q^2 = 0) = 0.9698(17), f_K/f_{\pi} = 1.1932(21), \ldots$

Baryon sector:

Statistical noise:

signal vs noise decays with $e^{-(E-3M_{\pi}/2)t}$ for large t.

 \rightarrow increase the number of "measurements" for large t.

Excited state pollution:

significant since t in $C_{3pt}^{N}(t,\tau)$ cannot be too large.

Contributions from resonances and multi-particle states — $N\pi$, $N\pi\pi$, ...

 $M_{\pi}
ightarrow M_{\pi}^{phys}$: spectrum becomes denser ($LM_{\pi} \sim 4$), lowest states are multi-particle.

 \rightarrow e.g. [Mainz,2207.03440], 9-17 values of t in the range

$$t = 0.2 - 1.4$$
 fm.

Quark mass dependence: not clear how well ChPT describes the quark mass dependence in the range $M_{\pi} \sim (M_{\pi}^{phys} - 300 \text{ MeV})$. Need $M_{\pi} \approx M_{\pi}^{phys}$.

Challenges in extracting the form factors

Extracting low Q^2 information:

Difficult to achieve low $Q^2 \neq 0$, (conventionally) \rightarrow large L, $p_j = (2\pi n/L)$.

Extrapolation to reach $\tilde{G}_P(0)$ and $G_M(0) \rightarrow \mu$ and $\langle r_M^2 \rangle$.

Some radii are very sensitive to M_{π} : $\langle r_{E,M}^2 \rangle^{p-n}$ diverge as $M_{\pi} \to 0$.

Direct methods to determine $dG(Q^2)/dQ^2$: see, e.g.,

Momentum derivative method using moments of C_{3pt} in coordinate space [Aglietti et al.,hep-lat/9401004], used in [PACS,2107.07085]. See also [Bouchard et al.,1610.02354], and [ETMC,2002.06984,1605.07327].

Expansion of correlation functions with respect to the spatial components of external momenta [Divitiis et al.,1208.5914], used in [LHPC,1711.11385].

Also partially twisted boundary conditions to access smaller Q^2 , see, e.g., [Divitiis et al.,hep-lat/0405002], [Sachrajda and Villadoro,hep-lat/0411033], applied in [QCDSF/UKQCD,Lattice 2008].

Not applicable to quark-line disconnected diagrams.

Electromagnetic form factors of the nucleon: $G_{E,M}^{p-n}$, $G_{E,M}^{p,n}$

Proton electric charge radius: $\langle r_E^2 \rangle^{1/2,p} = r_p$

Determined from:

Hydrogen spectroscopy, muonic-hydrogen spectroscopy, ep scattering.

Right: re-analyses of ep scattering data.

Future/ongoing experiments: ep (MAGIX, PRad-II, ULQ2), μp (MUSE, AMBER), ... MAGIX, Schlimmer, Tue 10:45.

Dispersive theory, Hammer, Wed 9:00.

Lattice: need results for $r_E^p = \langle r_E^2 \rangle^{1/2,p} < 2\%$ error with all systematics included!

Isovector EM form factors $G_{E,M}^{p-n}$

[NME,2103.05599] $N_f = 2 + 1 + 1$, a = 0.13, 0.09, 0.07 fm, $M_{\pi} = 166 - 285$, $LM_{\pi}^{min} = 4.3$.

 Q^2/M_N^2 instead of Q^2 : observe milder cut-off effects.

Minimum $Q^2 \neq 0$ is 0.045 GeV².

Isovector EM form factors $G_{E,M}^{p-n}$ Fits to $G_{E,M}^{p-n}$ (\blacksquare , \Box), direct determinations (\circ).

 $Q^{2,min} \sim 0.04 - 0.06 \text{ GeV}^2$, PACS 23 L = 10.8 fm, $Q^{2,min} = 0.015 \text{ GeV}^2$. Different analyses. PNDME20, NME21, Mainz21, Mainz23: several *a*, range of M_{π} , $LM_{\pi} \sim 4$.

Experiment: following [Mainz,2309.06590]: $\mu^{p,n}$ (×), $\langle r_{E,M}^2 \rangle^n$ from PDG. $\langle r_E^2 \rangle^p$: PDG (×), [A1,1007.5076] (□)

 $\langle r_M^2 \rangle^p$: [Lee et al.,1505.01489] A1 at MAMI (\Box), World data excluding A1 (\diamond).

Red: combined analysis of EM FF in time-like and space-like regions using dispersion theory [Lin et al.,2109.12961,2312.08694] "The proton magnetic radius: A new puzzle?"

EM form factors of the proton and neutron $G_{E,M}^{p,n}$

Need to also evaluate disconnected quark-line diagrams. Methods required introduce additional stochastic noise.

[Mainz,2309.06590,2309.07491] $N_f = 2 + 1$, a = 0.09 - 0.05 fm, $M_{\pi} = 130 - 290$ MeV, $LM_{\pi} \gtrsim 4$, utilise $Q^2 \lesssim 0.6$ GeV².

EM form factors

Mainz23: for each flavour combination u - d and u + d - 2s fit $G_{E,M}$ together using $O(q^3)$ covariant baryon ChPT [Bauer et al.,1209.3872] EOMS + vector mesons but without Δ d.o.f.

Common LECs \rightarrow much reduced uncertainty on μ , $\langle r_M^2 \rangle$ compared to independent *z*-expansion of G_E and G_M .

Only [Mainz,2309.06590] (This work) and ETMC19 (M_{π}^{phys} , a = 0.08 fm) include the disconnected contributions.

Total uncertainties: 2% for $\langle r_E^2 \rangle^{1/2,p}$, 1% for $\langle r_M^2 \rangle^{1/2,p}$, 2% for μ_M^p .

See also [Mainz,2309.17232] determination of the Zemach and Friar radi.

Axial form factors of the nucleon

Motivation: neutrino oscillation experiments

T2K: Tokai to Super-Kamiokande, E = 0.6 GeV, $L/E \approx 500$ km/GeV.

Also NOvA, $L/E \approx 400 \text{ km/GeV}$, DUNE $L/E \approx 520 \text{ km/GeV}$, HK(=T2K). Muon neutrino beam: proton on nucleus \rightarrow pions and kaons $\rightarrow \mu^+ \nu_{\mu}$ or $\mu^- \bar{\nu}_{\mu}$. Near and far detectors.

$$\mathsf{N}^{\mu}_{\mathrm{far}}(\mathsf{E}_{\nu}) = \mathsf{N}^{\mu}_{\mathrm{near}}(\mathsf{E}_{\nu}) \times [\mathrm{flux}(\mathsf{L})] \times [\mathrm{detector}] \times [1 - \sum_{\beta} \mathsf{P}_{\mu \to \beta}(\mathsf{E}_{\nu})]$$

 E_{ν} has to be reconstructed from the momentum of the detected charged lepton.

$$u_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}$$

But...

The neutrino beam is not monochromatic but has a momentum distribution. The nucleon is bound in a nucleus and has $|\mathbf{p}_{\mathrm{Fermi}}| \sim 200 \, \text{MeV}$. The lepton momentum reconstruction is often incomplete. Misidentification of inelastic scattering as elastic scattering.

Monte-Carlo simulation needs input regarding the differential cross section.

Neutrino-nucleon scattering cross-section

Quasi-elastic scattering (QE)

First calculations of $N \rightarrow N\pi$ matrix elements [Barca et al.,2211.12278], [ETMC,2408.03893] (motivated by removing excited state contamination of $N \rightarrow N$).

 $N \rightarrow$ resonance: $1 \rightarrow 2$ body finite volume formalism [Bernard et al.,1205.4642], [Agadjanov et al.,1405.3476], [Briceno, Hansen,1502.04314] also requires $N\pi \rightarrow N\pi$ scattering information. Scattering: Morningstar, Mon 10:45, Pittler, Mon 16:10.

Nuclear effects: Gnech, Tue 11:25, Piarulli, Tues 12:05.

Quasi-elastic scattering

Relevant V - A matrix element in the isospin limit:

$$\langle \mathbf{p}(\mathbf{p}') | \bar{\mathbf{u}} \gamma_{\mu} (1 - \gamma_{5}) \mathbf{d} | \mathbf{n}(\mathbf{p}) \rangle = \overline{u}_{\rho}(p') \left[\gamma_{\mu} F_{1}(Q^{2}) + \frac{i\sigma_{\mu\nu} q^{\nu}}{2m_{N}} F_{2}(Q^{2}) + \gamma_{\mu} \gamma_{5} G_{A}(Q^{2}) + \frac{q^{\mu}}{2m_{N}} \gamma_{5} \tilde{G}_{P}(Q^{2}) \right] u_{n}(p)$$

$$q_\mu=p'_\mu-p_\mu$$
, virtuality $Q^2=-q^2>0.$

Isovector Dirac and Pauli form factors $F_{1,2}$ are reasonably well determined experimentally from lepton-nucleon scattering for range of $Q^2 \sim (0.1 - 1)$ GeV² relevant for the long-baseline experiments.

 $G_A(Q^2)$: information from old $\bar{\nu}$ -p and ν -d scattering data.

Over-constrained dipole fits performed: $G_A(q^2) = \frac{g_A}{(1+\frac{q^2}{M_A^2})^2}$, $M_A = 2\sqrt{3}/\langle r_A^2 \rangle^{1/2}$. e.g. [Bernard et al.,hep-ph/0107088] $M_A = 1.03(2)$ GeV.

z-expansion analysis from [Meyer,1603.03048] $M_A = 1.01(24)$ GeV.

Neutrino scattering with nuclear targets, e.g. [MiniBooNE,1002.2680] $M_A = 1.35(17)$ GeV (using the dipole form).

Axial and induced pseudoscalar form factors

 $\tilde{G}_P(Q^2)$:

Impact on the cross section is suppressed by a factor $m_\ell^2/m_N^2 \approx 0.01$ for $\ell = \mu$.

Only relevant for very small Q^2 , where this form factor is large.

Not well constrained: experimentally measured at the muon capture point. In muonic hydrogen, $\mu^- + p \rightarrow \nu_\mu n$.

 $[MuCAP, 1210.6545]: g_P^* = m_\mu \tilde{G}_P(0.88 m_\mu^2)/(2m_N) = 8.06 \pm 0.48 \pm 0.28.$

Additional indirect information on G_A and \tilde{G}_P via low energy theorems from pion electroproduction $e^- + N \rightarrow \pi + N + e^-$, see, e.g. [Bernard et al.,hep-ph/0107088].

PCAC relation and pion pole dominance

In the continuum limit, for nucleon matrix elements: $A_{\mu} = \bar{u}\gamma_{\mu}\gamma_5 d$, $P = \bar{u}i\gamma_5 d$,

$$2\,\mathbf{m}_{\ell}\langle p(\vec{p}')|\mathbf{P}|n(\vec{p})\rangle = \langle p(\vec{p}')|\partial_{\mu}\mathbf{A}_{\mu}|n(\vec{p})\rangle$$

 $(m_u = m_d = m_\ell)$ leads to

$$m_{\ell}G_{P}(Q^{2}) = m_{N}G_{A}(Q^{2}) - \frac{Q^{2}}{4m_{N}}\tilde{G}_{P}(Q^{2})$$

where the pseudoscalar form factor: $\langle p(p')|P|n(p)\rangle = \overline{u}_p i \gamma_5 G_P(Q^2) u_n$.

SU(2) chiral limit:
$$\tilde{G}_P(Q^2) = 4m_N^2 G_A(Q^2)/Q^2$$

Finite M_{π}^2 , pion pole dominance (LO ChPT): only an approximation.

$$ilde{G}_P(Q^2) = G_A(Q^2) rac{4m_N^2}{Q^2+M_\pi^2} + ext{corrections}$$

 $\mathsf{PCAC+pion}$ pole dominance (PPD) \rightarrow only one independent form factor, e.g., $\mathit{G}_{\!A}(\mathit{Q}^2)$

$$G_P(Q^2) = G_A(Q^2) rac{m_N}{m_\ell} rac{M_\pi^2}{Q^2+M_\pi^2} + ext{corrections}$$

Excited state contamination in ChPT

 $N\pi$ excited state contamination in correlation functions can be investigated in ChPT.

For example,

Forward limit (zero recoil):

[Tiburzi,0901.0657,1503.06329] $N\pi$ excited state contribution to $G_A(0) = g_A$ in leading loop order HBChPT.

[Hansen,1610.03843] $N\pi$ excited state contribution to g_A , LO ChPT with finite volume interaction corrections obtained from the experimental scattering phase a la Lellouch-Lüscher. [Bär,1606.09385] BChPT: leading loop order g_A .

Form factors:

[Meyer,1811.03360] $N\pi$ contributions to $G_A(Q^2)$, $\tilde{G}_P(Q^2)$ and $G_P(Q^2)$ computed to tree-level in ChPT. [Bär,1906.03652,1812.09191] $N\pi$ contributions to $G_A(Q^2)$, $\tilde{G}_P(Q^2)$ and $G_P(Q^2)$ computed in

leading loop order BChPT.

[Bär,2104.00329] $N\pi$ contributions to $G_E(Q^2)$, $\tilde{G}_M(Q^2)$ computed in leading loop order BChPT.

Limitations to ChPT approach: pion momentum and M_{π} should be small. Applies to large source-sink separation (not always accessible due to deterioration of the signal). When using spatially extended sources $\langle r^2 \rangle_{smear}^{1/2} \ll 1/M_{\pi}$.

Excited state contamination in ChPT

Ground state: $N(-\vec{q}) \rightarrow N(\vec{0})$. $C_{3pt,\Gamma_i}^{\vec{p}',\vec{p},J}(t,\tau) = \sum_{n,m} Z_n Z_m^* e^{-E_{\vec{p}'}^n(t-\tau)} e^{-E_{\vec{p}}^m \tau} \langle n(\vec{p}') | J | m(\vec{p}) \rangle$.

Axial form factors

Axial and pseudoscalar currents can directly couple to pions: dominant contributions come from tree-level diagrams, where the pion takes the momentum of the current.

Large $N(\vec{0})\pi(-\vec{q}) \rightarrow N(\vec{0})$ and $N(-\vec{q}) \rightarrow N(-\vec{q})\pi(\vec{q})$ contributions for some combinations of the current and momentum transfer.

At tree-level only extraction of \tilde{G}_P and G_P affected.

 $N\pi$ contamination is largest as $M_{\pi}
ightarrow M_{\pi}^{phys}$ and low $Q^2
eq 0$.

No enhanced excited state contributions to G_A.

 \rightarrow (moderate) loop contributions to $\mathcal{A}_i \perp \vec{q}_i$.

Consistent with lattice data.

Isovector electromagnetic form factors

No tree-level $N\pi \rightarrow N$ contributions. Excited state contamination from $N\pi$ is "moderate". $N\pi\pi \rightarrow N$ transition matrix elements not studied.

Forward limit: axial charge, $G_A(0) \equiv g_A$

ETMC 23, PNDME 23, Mainz 22 and RQCD 19 results obtained from data for $Q^2 > 0$ as well as $Q^2 = 0$.

Rest: $Q^2 = 0$ only.

Recent results for $G_A(Q^2)$

Shown: [RQCD,1911.13150], [Mainz,2207.03440], [PNDME,2305.11330], [ETMC,2309.05774]. All perform continuum, physical point $M_{\pi} \rightarrow M_{\pi}^{phys}$, finite volume extrapolations.

Left: νD fit from [Meyer et al., 1603.03048].

Right: $\bar{\nu}H$ fit from [MINERva,Nature 614, 48 (2023)]: antineutrino scattering off hydrogen atoms inside hydrocarbon molecules.

Fits to expt., $Q^2 = 0$ fixed using $G_A(0) = g_A$. Not the case for the lattice results.

See also, e.g., [NME,2103.05599], [CalLat,2111.06333], [PACS,2311.10345]

Axial radius: $\langle r^2 \rangle_A$ [fm²]

Lattice results and fits to experiment obtained using the z-expansion.

 μH [Hill et al.,1708.08462]

Neutrino-nucleon cross-section

[Meyer et al.,2201.01839]

LQCD fit: [CalLat,2111.06333] $M_{\pi} = 130$ MeV, $LM_{\pi} = 3.9$, a = 0.12 fm.

Consistent with other lattice results but 1 ensemble, no continuum limit, only lattice data for $Q^2 < 1.2 \mbox{ GeV}^2.$

 ν_{μ} -H₂O CC0 π event rates at T2K.

GENIE nominal: $G_A(Q^2)$ from a dipole fit with $M_A = 0.941$ GeV to νH and νD data. CC-2p2h, charged-current interaction with two nucleons.

\tilde{G}_P at the muon capture point: g_P^*

 \tilde{G}_P not well known from expt: muon capture $\mu^- p \rightarrow \nu_{\mu} n$ gives $g_P^* = \frac{m_{\mu}}{2m_N} \tilde{G}_P(Q^2 = 0.88 \ m_{\mu}^2) = 8.06(55) \ [MuCap, 1210.6545]$

PCAC relation

$$\mathbf{r}_{\mathsf{PCAC}} = \frac{m_q G_P(Q^2) + \frac{Q^2}{4m_N} \tilde{G}_P(Q^2)}{m_N G_A(Q^2)} = 1$$

Enhanced excited state contributions $(N \to N\pi)$ to G_P and \tilde{G}_P . Earlier results saw PCAC relation violated by 40% at M_{π}^{phys} and $Q^2 = 0.05 \text{ GeV}^2$ [Jang et al.,1905.06470].

Pion pole dominance

Compare $\tilde{F}_P(Q^2) = \tilde{G}_P(Q^2) \frac{(Q^2+M_\pi^2)}{4m_N^2}$ with $G_A(Q^2)$.

RQCD19: violations of PPD smaller than 2% at $Q^2 = 0$ and smaller than 1% at $Q^2 = 0.5 \text{ GeV}^2$.

MuCap g_P^* also compatible with pion pole dominance.

 $g_{\pi NN}$

Strange EM and axial form factors

Parity violating *ep* scattering experiments: interference between scattering via γ and Z. Schlimme Wed 10:45. [P2 expt,1802.04759] Measure the weak charge of the proton $Q_W(p)$.

$$A_{PV} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha_{em}} (Q_W(p) - F(E_i, Q^2))$$

electroweak mixing angle $\sin^2 \theta_W \approx (1 - Q_W(p))/4$.

Relevant form factor $F(E_i, Q^2) = F^{EM}(E_i, Q^2) + F^A(E_i, Q^2) + F^S(E_i, Q^2)$.

 $F^{EM}
ightarrow G^{p}_{E,M}, \qquad F^{A}
ightarrow G^{p}_{E,M}, \ (1-4\sin^{2} heta_{W})G^{p,Z}_{A} \qquad F^{S}
ightarrow G^{p}_{E,M}, \ G^{s}_{E,M},$

Estimates of $G_{E,M}^{s}$ from PV experiments, SAMPLE, A4, HAPPEX and G0.

 $G_A^{p,Z}=G_A^s-G_A,$

 G_A^s can be constrained by $\nu N \rightarrow \nu N$, $\bar{\nu}N \rightarrow \bar{\nu}N$ scattering.

 μ BooNE aims to extract G_A^s in range $Q^2 = 0.08 - 1$ GeV².

Strange EM and axial form factors: $G^{s}_{E,M}$, $G^{s}_{A,\tilde{P}}$

Strange EM and axial form factors: $G_{E,M}^{s}$, $G_{A,\tilde{P}}^{s}$

Strange EM form factors: also [Mainz,1903.12566], [χ QCD,1705.05849], [LHPC,1505.01803].

[ETMC,1909.10744]

[Mainz,1903.12566], Expt [Maas and Paschke,2017]

Charm EM form factors: [χ QCD,2003.01078]:

 $\langle r_E^2\rangle^c=-0.0005(1)~{\rm fm}^2$, $\mu_M^c=-0.00127(38){\rm stat}$ (5)sys, $\langle r_M^2\rangle^c=-0.0003(1)~{\rm fm}^2$.

Strange and charm axial form factors: [ETMC,2106.13468]:

 $\langle r_A^2 \rangle^{1/2,s} = 0.984(239)(12)(295) \text{ fm}, \qquad \langle r_A^2 \rangle^{1/2,c} = 0.987(133)(293)(226) \text{ fm}$ see also, e.g., [LHPC,1703.06703].

Summary and outlook

Significant progress has been made in the last few years in the determination of the electromagnetic and axial form factors on the lattice.

- ★ First calculation of $G_{E,M}^{p,n}$ where disconnected contributions are included and all sources of systematic uncertainty are considered.
- ★ General agreement between results for $G_A(Q^2)$ and $\tilde{G}_P(Q^2)$ over the range $Q^2 = 0 1$ GeV², after continuum, quark mass, volume extrapolations.

A number of checks have been passed: consistency with expt. values for g_A and g_P^* . The PCAC relation is satisfied.

Pion pole dominance is satisfied within the uncertainties at M_{π}^{phys} .

* New results for the strange form factors $G^s_{E,M}(Q^2)$ and $G^s_{A,P}(Q^2)$ and even for charm.

Further studies expected in the next 2-3 years. In the future:

- ★ First steps towards computing $N \rightarrow N\pi$ matrix elements relevant for $N \rightarrow \Delta$, ... transitions have been made. Work on this will continue. The finite volume formalism needs to be implemented.
- ★ Investigations of multi-particle excited state contamination to $N \rightarrow N$ transitions using a large basis of operators, $N\pi$, $N\pi\pi$, ... and the variational method (GEVP).

Generalised form factors, including the gravitational form factors are also being actively studied.