

NUCLEON STRUCTURE IN LIGHT MUONIC ATOMS

Franziska Hagelstein (JGU Mainz & PSI Villigen)

in collaboration with

V. Biloshytskyi, T. Esser, V. Lensky, V. Pascalutsa, S. Pitelis (JGU)

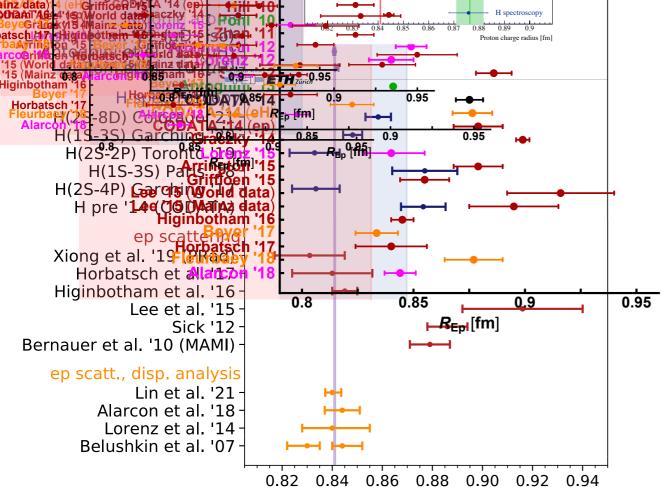
and V. Sharkovska (PSI, UZH)

PROTON RADIUS

μp spectroscopy

- CODATA since 2018 included the μH result for r_p
- Still open issues: H(2S-8D), H(1S-3S) @ Paris

Question: PRECISION VS ACCURACY



R_{Ep} [fm]

 r_p [fm]

CODATA '10 Hill '10 Pohl '10 Zhan '11

CODATA '1

PROTON RADIUS

μp spectroscopy

R_{Ep} [fm]

0.9

0.82 0.84 0.86 0.88

0.85

 r_p [fm]

⊢R_{Epl}[fm]

0.9

0.90 0.92 0.94

0.8

- Muonic atoms allow for PRECISE extractions of nuclear charge and Zemach radii
- CODATA since 2018 included the μ H result for r_p
- Still open issues: H(2S-8D), H(1S-3S) @ Paris

Question: PRECISION VS ACCURACY

H(2S-4P) Corchsi (World data

Horbatsch et allanca

Lee et al. '15

Lin et al. '21 Alarcon et al. '18 Lorenz et al. '14 Belushkin et al. '07

Sick '12

Higinbotham et al. '16

ep scatt., disp. analysis

Bernauer et al. '10 (MAMI)

Xiong et al. '1

CODATA '10 Hill '10 Pohl '10 Zhan '11

CODATA '1

0.95

PRECISION ATOMIC SPECTROSCOPY



A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389

FROM PUZZLE TO PRECISION

- Several experimental activities ongoing and proposed:
 - IS hyperfine splitting in μH (ppm accuracy) and μHe
 - Improved measurement of Lamb shift in μ H, μ D and μ He⁺ possible (\times 5)
 - Medium- and high-Z muonic atoms
- Theory Initiative is needed!

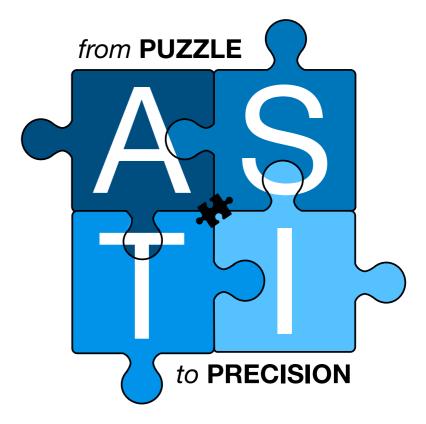
Muonic Atom Spectroscopy Theory Initiative

Initial objectives:

Accurate theory predictions for light muonic atoms to test fundamental interactions by

compating to electrenic oms

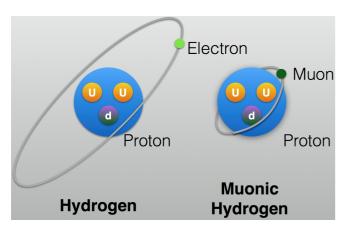
Compared the splitting in μH

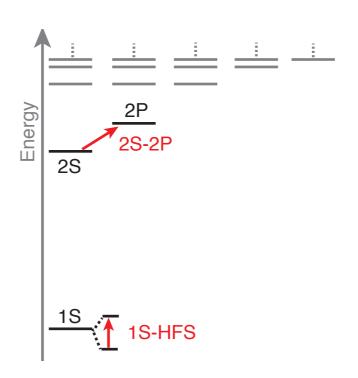


https://asti.uni-mainz.de

"New perspectives in the charge radii determination of light nuclei" ECT* Trento, 28.07.25 — 01.08.25

Why muonic atoms?





om 2S-2P

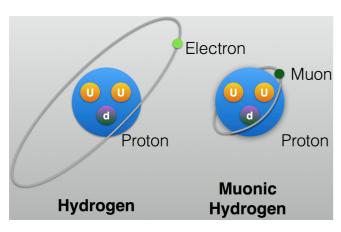
charge radii

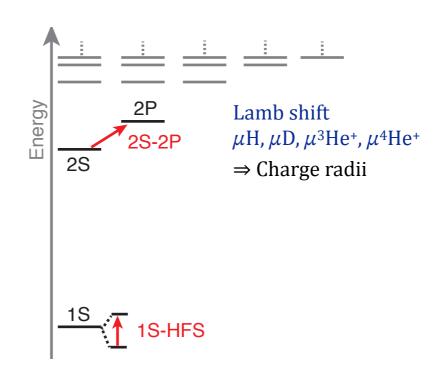
om HFS

- 2PE contributions
- Zemach radii
- Magnetic structure

- 2S-2P μp
- 2S-2P μd
- 2S-2P μ^3 He, μ^4 He
- 1S-HFS μp
- 1S-HFS μ³He

Why muonic atoms?





on 25 amb shift:

charge radii

om
$$HFS$$
 $E_{nl}(LO+NLO) = 0$

- 2PE contributions
- Zemach radii
- Magnetic structure

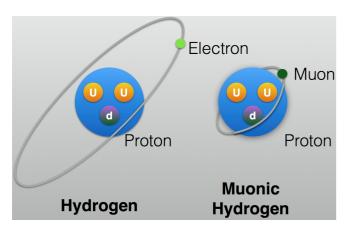
wave function at the origin

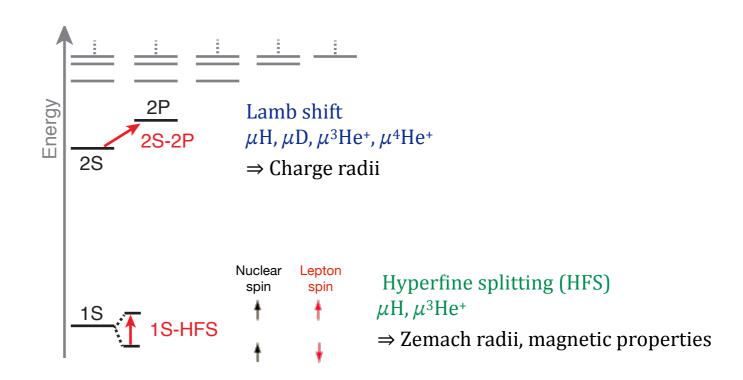
$$= \delta_{l0} \, \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3}$$

Friar radius or 3rd charge Zemach moment radius $\begin{array}{c} \text{charge radii} \\ \text{com HFS} \\ E_{nl}(\text{LO+NLO}) = \delta_{l0} \, \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3} \, \overline{ \begin{bmatrix} \begin{array}{c} \bullet \text{ 2S-2P } \mu \text{p} \\ R_E^2 \text{ 2S-2P } \mu \text{d} \\ \bullet \text{ 2S-2P} \end{array} } \\ \text{e} \end{array} } \\ \text{com HFS} \\ \end{array}$

- 1S-HFS μp
- 1S-HFS μ³He

Why muonic atoms?





on 25 amb shift:

charge radii

charge radii
$$\frac{\Delta E_{nl}(\mathrm{LO}+\mathrm{NLO})}{\delta_{l0}} = \delta_{l0} \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3} \begin{bmatrix} \frac{2\mathrm{S}-2\mathrm{P} \, \mu \mathrm{D}}{2\mathrm{S}-2\mathrm{P} \, \mu \mathrm{d}} R_{E(2)}^3 \\ 2\mathrm{S}-2\mathrm{P} \, \mu \mathrm{d} R_{E(2)}^3 \end{bmatrix}$$

2PE contributions

- Zemach radii
- Magnetic structure

wave function at the origin

$$= \delta_{l0} \, \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3}$$

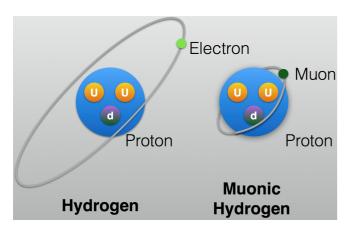
Friar radius or 3rd charge Zemach moment radius

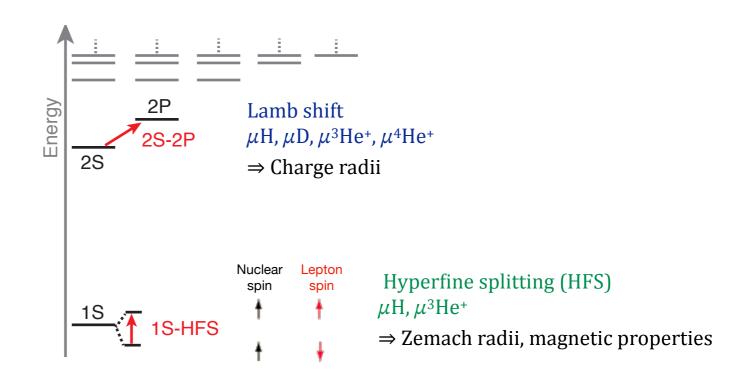
- 1S-HFS μp
- 1S-HFS µ3He

Zemach radius

$$\Delta E_{nS}(\text{LO} + \text{NLO}) = E_F(nS) [1 - 2 Z \alpha m_r R_Z]$$

Why muonic atoms?





on 25 20mb shift:

charge radii

om
$$E^{\Delta}E_{nl}(LO+NLO) =$$

- 2PE contributions
- Zemach radii
- Magnetic structure

wave function at the origin

$$= \delta_{l0} \, \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3}$$

charge radius

Friar radius or 3rd Zemach moment

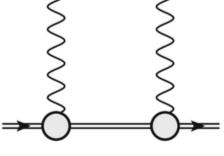
charge radii
$$\frac{\Delta E_{nl}(\mathrm{LO+NLO})}{\delta_{l0}} = \delta_{l0} \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3} \begin{bmatrix} \frac{2S-2P}{2}\mu p \\ \frac{2S-2P}{2}\mu d \\ \frac{2S-2P}{2}\mu^3 He, \mu^4 He \end{bmatrix}$$

- 1S-HFβ μp
- 1S-HF\$ μ³He

NLO becomes appreciable in µH

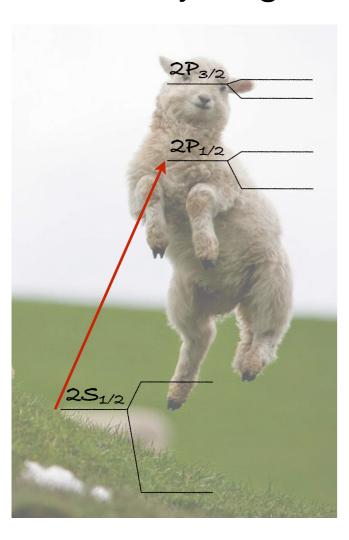
Zemach radius

$$\Delta E_{nS}(\text{LO} + \text{NLO}) = E_F(nS) [1 - 2 Z \alpha m_r R_Z]$$

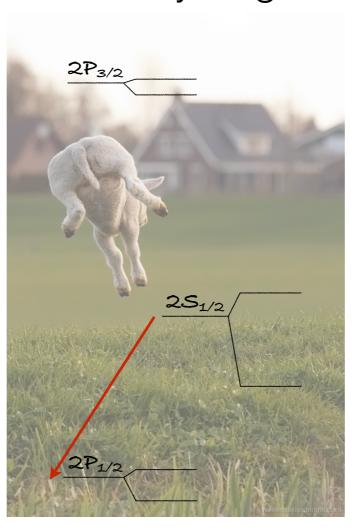


NORMAL VS. MUONIC ATOMS

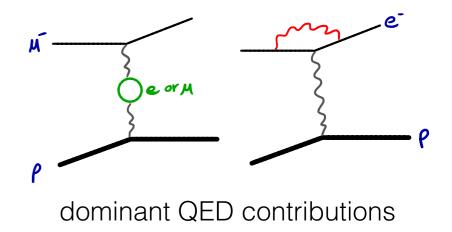
muonic hydrogen:



normal hydrogen:



Lamb shift



K. Pachucki, ¹ V. Lensky, ² F. Hagelstein, ^{2,3} S. S. Li Muli, ² S. Bacca, ^{2,4} and R. Pohl⁵

(Dated: May 19, 2023) Rev. Mod. Phys. **96** (2024) 1, 015001

$E_{ ext{QED}} \ \mathcal{C} r_C^2 \ E_{ ext{NS}}$	point nucleus finite size nuclear structure	$206.0344(3) -5.2259 r_p^2 0.0289(25)$	$ 228.7740(3) -6.1074 r_d^2 1.7503(200) $	$ \begin{array}{r} 1644.348(8) \\ -103.383 r_h^2 \\ 15.499(378) \end{array} $	$ \begin{array}{r} 1668.491(7) \\ -106.209 r_{\alpha}^{2} \\ 9.276(433) \end{array} $
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.598(48)	1378.521(48)
$rac{r_C}{r_C}$	this work previous ^a	$0.84060(39) \\ 0.84087(39)$	$2.12758(78) \\ 2.12562(78)$	$1.97007(94) \\ 1.97007(94)$	$1.6786(12) \\ 1.67824(83)$

¹Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

 $^{^2}$ Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

³ Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁴Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany

⁵Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

K. Pachucki, ¹ V. Lensky, ² F. Hagelstein, ^{2,3} S. S. Li Muli, ² S. Bacca, ^{2,4} and R. Pohl⁵

(Dated: May 19, 2023) Rev. Mod. Phys. **96** (2024) 1, 015001

$egin{aligned} E_{ ext{QED}} \ \mathcal{C} r_C^2 \ E_{ ext{NS}} \end{aligned}$	point nucleus finite size nuclear structure	$206.0344(3) -5.2259 r_p^2 0.0289(25)$	$ 228.7740(3) -6.1074 r_d^2 1.7503(200) $	$ \begin{array}{r} 1644.348(8) \\ -103.383 r_h^2 \\ 15.499(378) \end{array} $	$ \begin{array}{c} 1668.491(7) \\ -106.209 r_{\alpha}^{2} \\ 9.276(433) \end{array} $
$E_L(\exp)$	experiment ^a	202.3706(23)	202.8785(34)	1258.598(48)	1378.521(48)
$r_C \ r_C$	this work previous ^a	$0.84060(39) \\ 0.84087(39)$	$2.12758(78) \\ 2.12562(78)$	$1.97007(94) \\ 1.97007(94)$	$1.678 6(12) \\ 1.678 24(83)$

μΗ:

present accuracy comparable with experimental precision

 μD , $\mu^{3}He^{+}$, $\mu^{4}He^{+}$:

present accuracy factor 5-10 worse than experimental precision

¹Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

²Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

³ Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁴Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany

⁵Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

K. Pachucki, ¹ V. Lensky, ² F. Hagelstein, ^{2,3} S. S. Li Muli, ² S. Bacca, ^{2,4} and R. Pohl⁵

(Dated: May 19, 2023) Rev. Mod. Phys. **96** (2024) 1, 015001

$E_{ m QED} \ {\cal C} r_C^2 \ E_{ m NS}$	point nucleus finite size nuclear structure	$206.0344(3) -5.2259 r_p^2 0.0289(25)$	$ 228.7740(3) -6.1074 r_d^2 1.7503(200) $	$ \begin{array}{r} 1644.348(8) \\ -103.383 r_h^2 \\ 15.499(378) \end{array} $	$ \begin{array}{r} 1668.491(7) \\ -106.209 r_{\alpha}^{2} \\ 9.276(433) \end{array} $
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.598(48)	1378.521(48)
$egin{array}{c} r_C \ r_C \end{array}$	this work previous ^a	$0.84060(39) \\ 0.84087(39)$	$2.12758(78) \\ 2.12562(78)$	$1.97007(94) \\ 1.97007(94)$	$1.6786(12) \\ 1.67824(83)$

μΗ:

present accuracy comparable with experimental precision

 $\mu D, \mu^{3}He^{+}, \mu^{4}He^{+}$:

present accuracy factor 5-10 worse than experimental precision

- Experiments will improve by up to a factor of 5
- Theoretical improvement needed for nuclear/nucleon 2- and 3-photon exchange

¹Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

²Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

³ Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁴Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany

⁵Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

K. Pachucki, ¹ V. Lensky, ² F. Hagelstein, ^{2, 3} S. S. Li Muli, ² S. Bacca, ^{2, 4} and R. Pohl⁵

(Dated: May 19, 2023) Rev. Mod. Phys. **96** (2024) 1, 015001

$E_{ m NS}$ nuclear structure $0.0289(25)$ $1.7503(200)$ $15.499(378)$ 9.276 $E_L({ m exp})$ experiment $202.3706(23)$ $202.8785(34)$ $1258.598(48)$ 1378.521	$E_{ m QED} \ {\cal C} r_C^2$	point nucleus finite size	$206.0344(3) \\ -5.2259r_p^2$	$228.7740(3)$ $-6.1074r_d^2$	$1644.348(8)$ $-103.383 r_h^2$	$1668.491(7) \\ -106.209 r_{\alpha}^{2}$
	$E_{ m NS}$			$\boldsymbol{\alpha}$	10	9.276(433)
r_C this work $0.84060(39)$ $2.12758(78)$ $1.97007(94)$ 1.678	$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.598(48)	1378.521(48)
	r_C	this work	0.84060(39)	2.12758(78)	1.97007(94)	1.6786(12)
r_C previous ^a $0.84087(39)$ $2.12562(78)$ $1.97007(94)$ 1.678	r_C	$\mathrm{previous}^{\mathrm{a}}$	0.84087(39)	2.12562(78)	1.97007(94)	1.67824(83)

$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)
$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)
$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)
$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)

Theoretical improvement needed for nuclear/nucleon 2- and 3-photon exchange

¹Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

 $^{^2}$ Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

³ Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

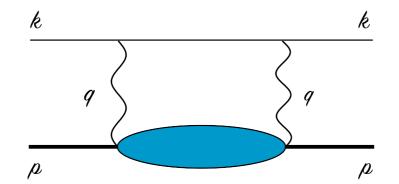
⁴Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany

⁵Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

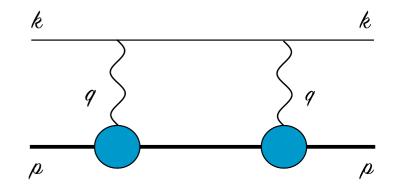
STRUCTURE EFFECTS THROUGH 27

Proton-structure effects at subleading orders arise through multi-photon processes

forward two-photon exchange (2γ)



polarizability contribution (non-Born VVCS)

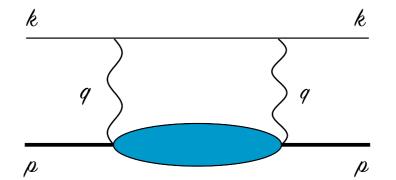


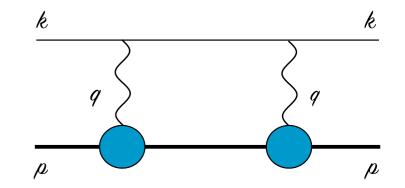
elastic contribution:
finite-size recoil,
3rd Zemach moment (Lamb shift),
Zemach radius (Hyperfine splitting)

STRUCTURE EFFECTS THROUGH 27

Proton-structure effects at subleading orders arise through multi-photon processes

forward two-photon exchange (2γ)





polarizability contribution (non-Born VVCS)

elastic contribution:
finite-size recoil,
3rd Zemach moment (Lamb shift),
Zemach radius (Hyperfine splitting)

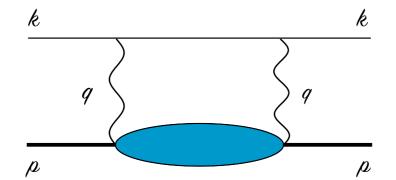
"Blob" corresponds to doubly-virtual Compton scattering (VVCS):

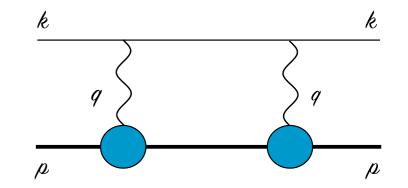
$$T^{\mu\nu}(q,p) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) T_2(\nu,Q^2) - \frac{1}{M^2} \left(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha}\right) S_2(\nu,Q^2)$$

STRUCTURE EFFECTS THROUGH 27

Proton-structure effects at subleading orders arise through multi-photon processes

forward two-photon exchange (2γ)





polarizability contribution (non-Born VVCS)

elastic contribution:
finite-size recoil,
3rd Zemach moment (Lamb shift),
Zemach radius (Hyperfine splitting)

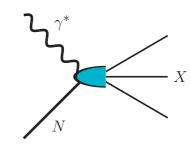
"Blob" corresponds to doubly-virtual Compton scattering (VVCS):

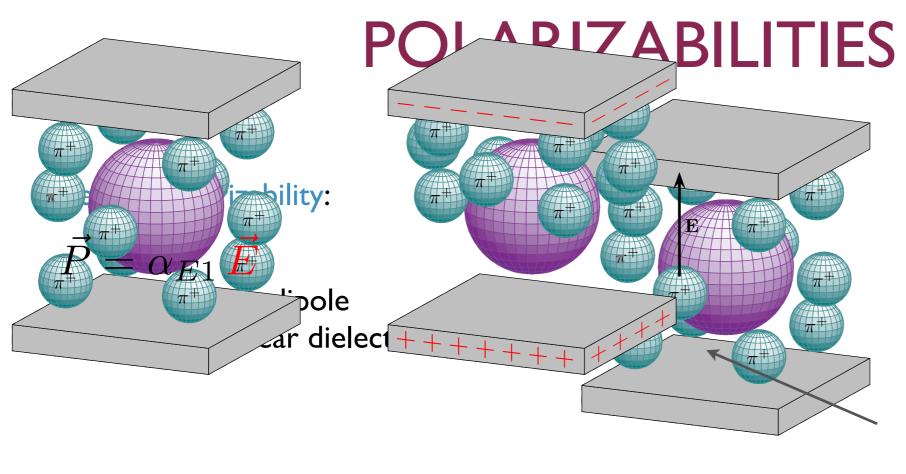
$$T^{\mu\nu}(q,p) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) T_2(\nu,Q^2) - \frac{1}{M^2} \left(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha}\right) S_2(\nu,Q^2)$$

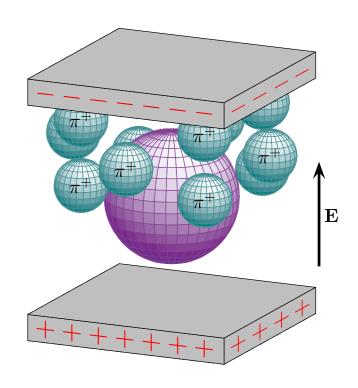
Proton structure functions:

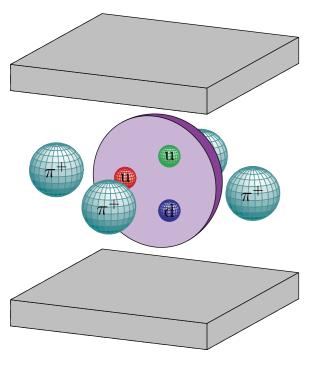
$$f_1(x,Q^2), \ f_2(x,Q^2), \ g_1(x,Q^2), \ g_2(x,Q^2)$$
Lamb shift

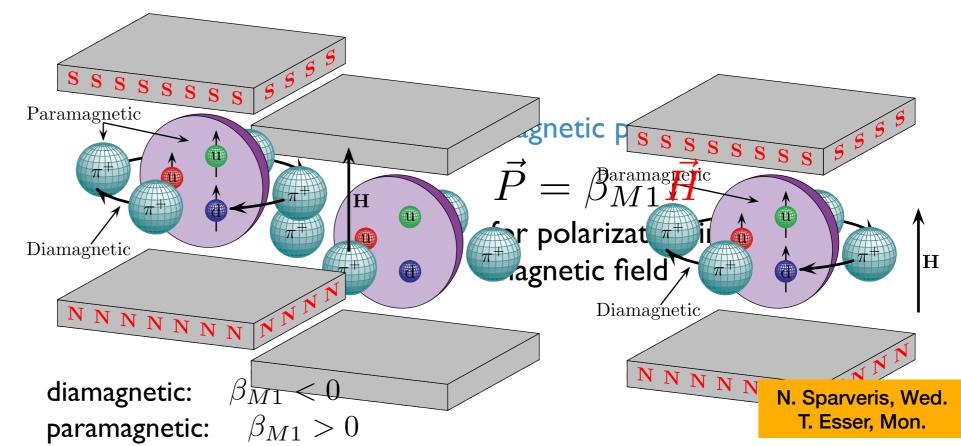
Hyperfine splitting (HFS)

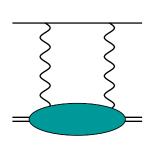












EFFECT IN THE LAMB SHIFT

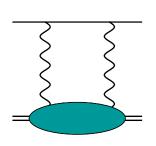
wave function at the origin

$$\Delta E(nS) = 8\pi\alpha m \,\phi_n^2 \, \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \, \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4 (Q^4 - 4m^2\nu^2)}$$

dispersion relation & optical theorem:

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$
$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$

$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$



2γ EFFECT IN THE LAMB SHIFT

wave function at the origin

$$\Delta E(nS) = 8\pi\alpha m \,\phi_n^2 \,\frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \,\frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

dispersion relation & optical theorem:

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$
$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$

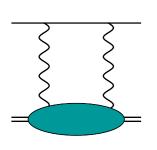
■ Caution: in the data-driven dispersive approach the $T_1(0,Q^2)$ subtraction function is modelled!

low-energy expansion:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2)/Q^2 = 4\pi \beta_{M1}$$

modelled Q² behavior:

$$\overline{T}_1(0, Q^2) = 4\pi \beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$$



2γ EFFECT IN THE LAMB SHIFT

wave function at the origin

$$\Delta E(nS) = 8\pi\alpha m \,\phi_n^2 \, \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \, \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4 (Q^4 - 4m^2\nu^2)}$$

dispersion relation & optical theorem:

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{el})^2 - i0^+}$$

$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+}$$

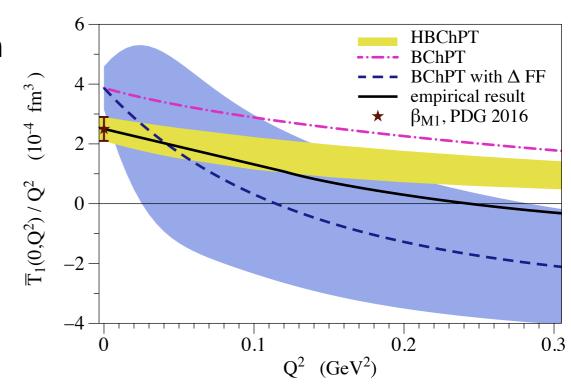
■ Caution: in the data-driven dispersive approach the $T_1(0,Q^2)$ subtraction function is modelled!

low-energy expansion:

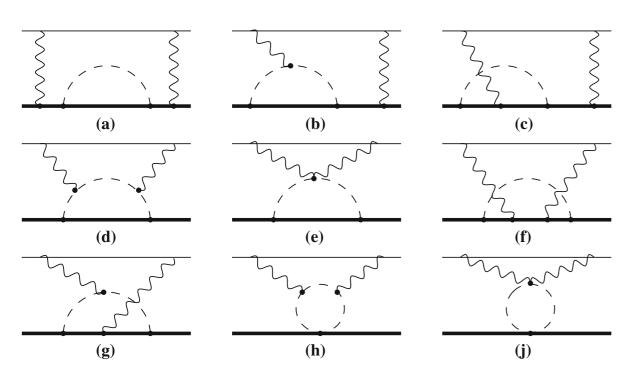
$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2)/Q^2 = 4\pi \beta_{M1}$$

modelled Q² behavior:

$$\overline{T}_1(0, Q^2) = 4\pi \beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$$



2γ POLARIZABILITY EFFECT FROM BCHPT

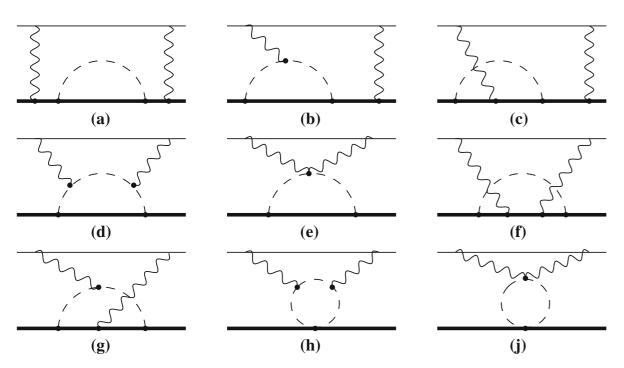


J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

LO BChPT prediction with pion-nucleon loop diagrams:

$$\Delta E^{\text{(LO)pol}}(2S, \mu \text{H}) = -9.6^{+1.4}_{-2.9} \,\mu\text{eV}$$

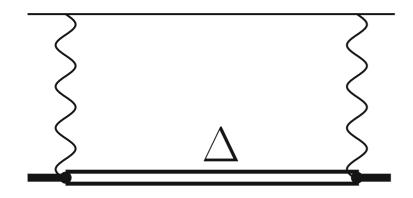
2γ POLARIZABILITY EFFECT FROM BCHPT



LO BChPT prediction with pion-nucleon loop diagrams:

$$\Delta E^{\text{(LO)pol}}(2S, \mu \text{H}) = -9.6^{+1.4}_{-2.9} \,\mu\text{eV}$$

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852



V. Lensky, FH, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D **97** (2018) 074012

■ Δ prediction from $\Delta(1232)$ exchange:

- Uses large- N_c relations for the Jones-Scadron N-to- Δ transition form factors M. Paolone, Mon.
- Small due to the suppression of β_{MI} in the Lamb shift but important for the T_I subtraction function

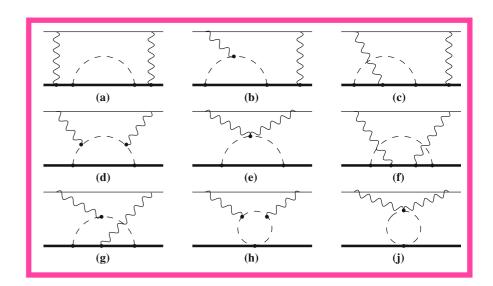
$$\Delta E^{\langle \Delta - \text{excit} \rangle \text{pol}} (2S, \mu \text{H}) = 0.95 \pm 0.95 \,\mu\text{eV}$$

POLARIZABILITY EFFECT IN μ H LAMB SHIFT

Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

Reference	$E_{2S}^{(\mathrm{subt})}$	$E_{2S}^{(\mathrm{inel})}$	$E_{2S}^{(\mathrm{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN					
(73) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(74) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(75) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(76) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.	-33(2)
(77) Gorchtein et al.'13 ^a	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(78) Hill and Paz '16					-30(13)
(79) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
Leading-order $\mathrm{B}\chi\mathrm{PT}$					
(80) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(81) Lensky <i>et al.</i> '17 ^b	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(82) Fu et al. '22					-37.4(4.9)

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small!



^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

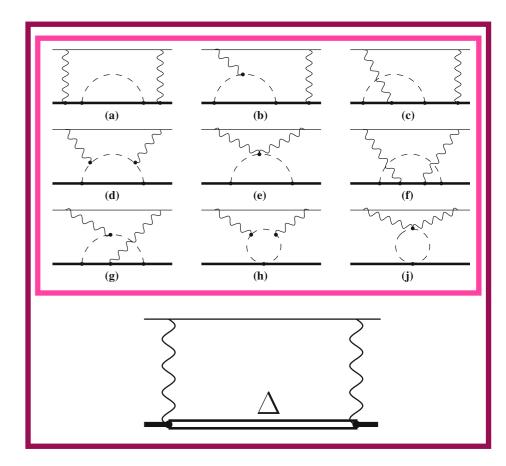
^bPartially includes the $\Delta(1232)$ -isobar contribution.

POLARIZABILITY EFFECT IN μ H LAMB SHIFT

Table 1 Forward 2 γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

Reference	$E_{2S}^{(\mathrm{subt})}$	$E_{2S}^{(\mathrm{inel})}$	$E_{2S}^{(\mathrm{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN					
(73) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(74) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(75) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(76) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.	-33(2)
(77) Gorchtein et al.'13 ^a	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(78) Hill and Paz '16					-30(13)
(79) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
LEADING-ORDER $\mathrm{B}\chi\mathrm{PT}$					
(80) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(81) Lensky <i>et al.</i> '17 b	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(82) Fu et al. '22					-37.4(4.9)

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small!



^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

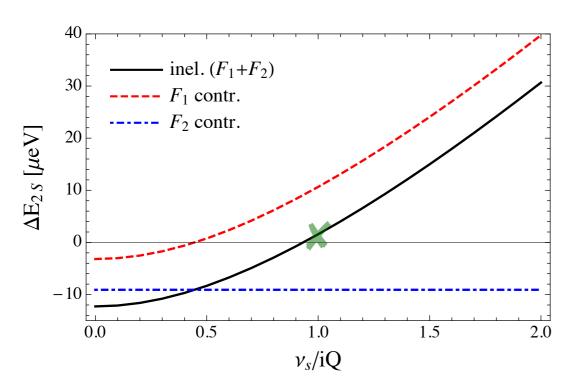
EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for $\overline{T}_1(\nu,Q^2)$ with subtraction at $\nu_s=iQ$
- Dominant part of polarizability contribution:

$$\Delta E_{nS}^{'(\text{subt})} = \frac{2\alpha m}{\pi} \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{2 + v_l}{(1 + v_l)^2} \, \overline{T}_1(iQ, Q^2) \text{ with } v_l = \sqrt{1 + 4m^2/Q^2}$$

$$\overline{T}_1(iQ, Q^2) = -\overline{T}_L(iQ, Q^2) = -4\pi Q^2 \alpha_{E1} + \mathcal{O}(v^2, Q^4)$$

- \blacksquare Inelastic contribution for $\nu_{\scriptscriptstyle S}=iQ$ is order of magnitude smaller than for $\nu_{\scriptscriptstyle S}=0$
- Prospects for future lattice QCD and EFT calculations



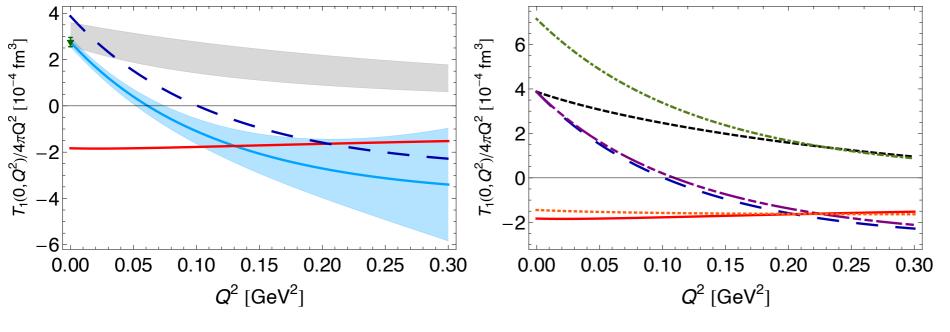
FH, V. Pascalutsa, Nucl. Phys. A 1016 (2021) 122323

based on Bosted-Christy parametrization:

$$\Delta E_{2S}^{(\text{inel})}(\nu_s = 0) \simeq -12.3 \,\mu\text{eV}$$

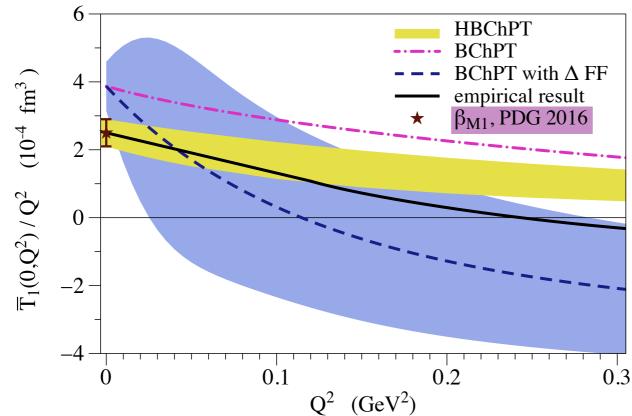
$$\Delta E_{2S}^{'(\text{inel})}(\nu_s = iQ) \simeq 1.6 \,\mu\text{eV}$$

SUBTRACTION FUNCTION



NLO BChPT δ -exp. NLO without g_M dipole πN loops $\pi \Delta$ loops

 Δ -exchange



V. Lensky, FH, V. Pascalutsa and M. Vanderhaeghen Phys. Rev. D **97** (2018) 074012

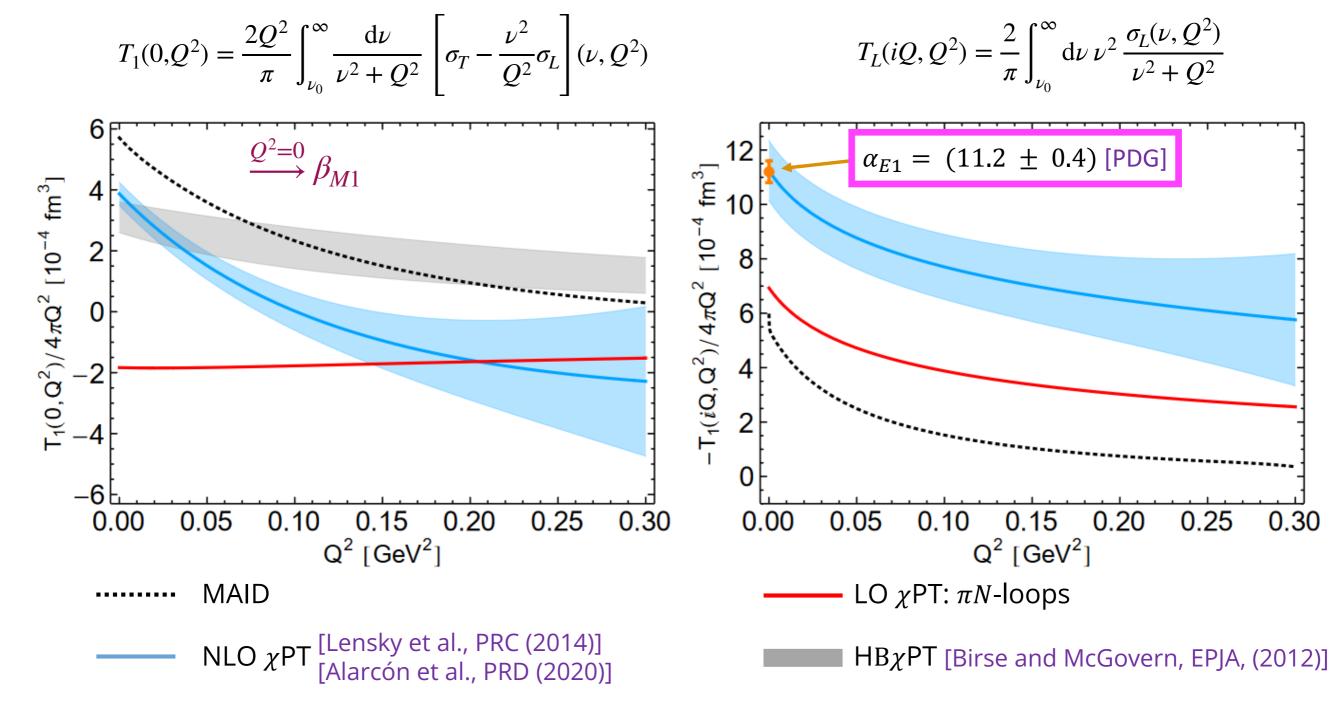
Related to magnetic dipole polarizability:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2)/Q^2 = 4\pi \beta_{M1}$$

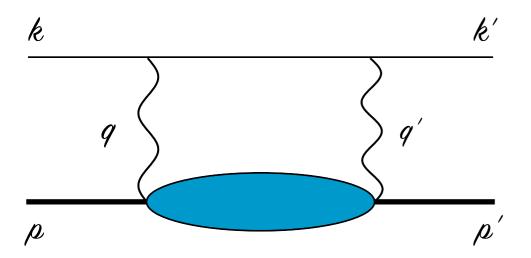
- Dominated by the Δ-exchange contribution:
 - Dipole FF on the magnetic coupling is important
 → zero crossing

DATA-DRIVEN EVALUATION

- New integral equations for data-driven evaluation of subtraction functions
- High-quality parametrization of σ_L at $Q \to 0$ needed



$(Z\alpha)^6 \ln(Z\alpha)$ POLARIZABILITY EFFECT



$$V(r) = \mathcal{M}(0) \, \delta(\boldsymbol{r}) - \left[\frac{1}{\pi} \int_0^\infty \mathrm{d}t \, \operatorname{Im} \mathcal{M}(t) \, \left[\frac{\delta(\boldsymbol{r})}{t} - \frac{e^{-r\sqrt{t}}}{4\pi r} \right] \right]$$

off-forward 2y

Im
$$\mathcal{M}(t) \approx -\frac{\pi \alpha}{(1 - t/4m^2)^{7/2}} \sqrt{t} \arccos\left[\sqrt{t}/2m\right] \alpha_{E1} + \mathcal{O}(t)$$

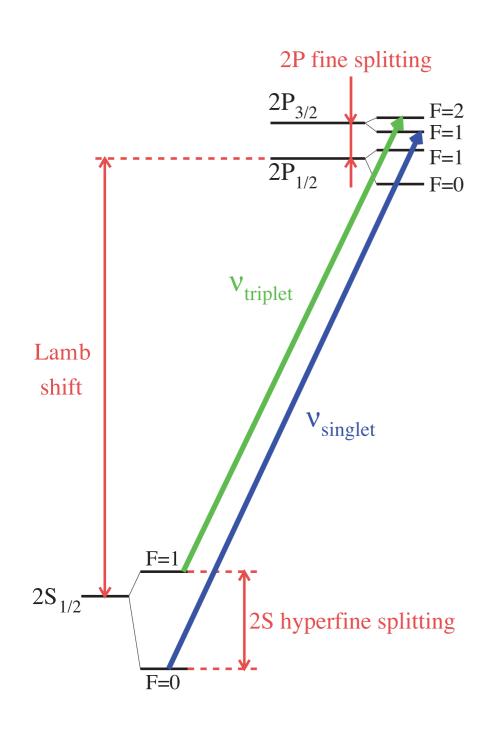
$$E_{nS} = -\frac{4(Z\alpha m_r)^4 \alpha \alpha_{E1}}{n^3} \ln \frac{Z\alpha m_r}{2nm}$$

- $(Z\alpha)^6 \ln(Z\alpha)$ effect in the Lamb shift is expressed entirely in terms of the static electric dipole polarizability
- No contribution from the magnetic dipole polarizability
- Can be identified with the known Coulomb distortion effect

$$\Delta E_{\rm HFS}(nS) = [1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm structure}] E_F(nS)$$

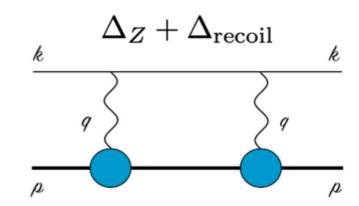
Fermi energy:

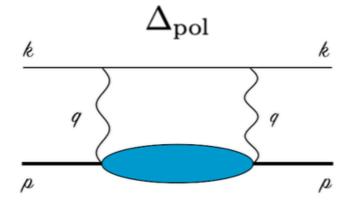
$$E_F(nS) = \frac{8}{3} \frac{Z\alpha}{a^3} \frac{1+\kappa}{mM} \frac{1}{n^3}$$
 with Bohr radius $a=1/(Z\alpha m_r)$



- Measurements of the μH ground-state HFS planned by the CREMA and FAMU collaborations
 - Very precise input for the 2γ effect needed to narrow down frequency search range for experiment
 - Zemach radius can help to pin down the magnetic properties of the proton

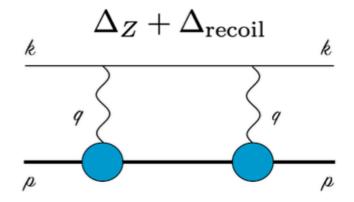
$$\Delta E_{\rm HFS}(nS) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm structure}\right] E_F(nS)$$
 with $\Delta_{\rm structure} = \Delta_Z + \Delta_{\rm recoil} + \Delta_{\rm pol}$





$$\Delta E_{\rm HFS}(nS) = [1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm structure}] E_F(nS)$$

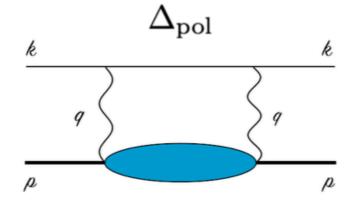
with
$$\Delta_{
m structure} = \Delta_Z + \Delta_{
m recoil} + \Delta_{
m pol}$$



Zemach radius:

$$\Delta_Z = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_r R_Z$$

A. Antognini, et al., Science **339** (2013) 417–420

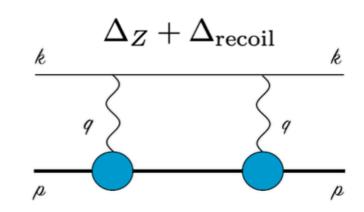


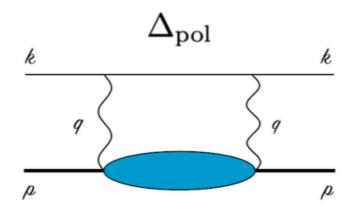
$$\Delta E_{\rm HFS}(nS) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm structure}\right] E_F(nS)$$
 with
$$\Delta_{\rm structure} = \boxed{\Delta_Z} + \Delta_{\rm recoil} + \Delta_{\rm pol}$$

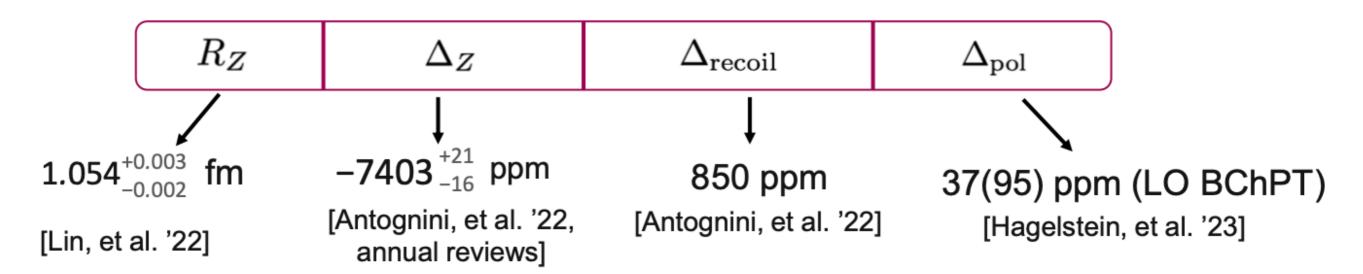
Zemach radius:

$$\Delta_Z = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_r R_Z$$

A. Antognini, et al., Science 339 (2013) 417-420







Theory: QED, ChPT, data-driven dispersion relations, ab-initio few-nucleon theories

Experiment: HFS in μ H, μ He⁺, ...

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability Interpreting the exp.

extract E^{TPE} , $E^{\text{pol.}}$ or R_Z

Input for datadriven evaluations

form factors, structure functions, polarizabilities

Electron and Compton Scattering

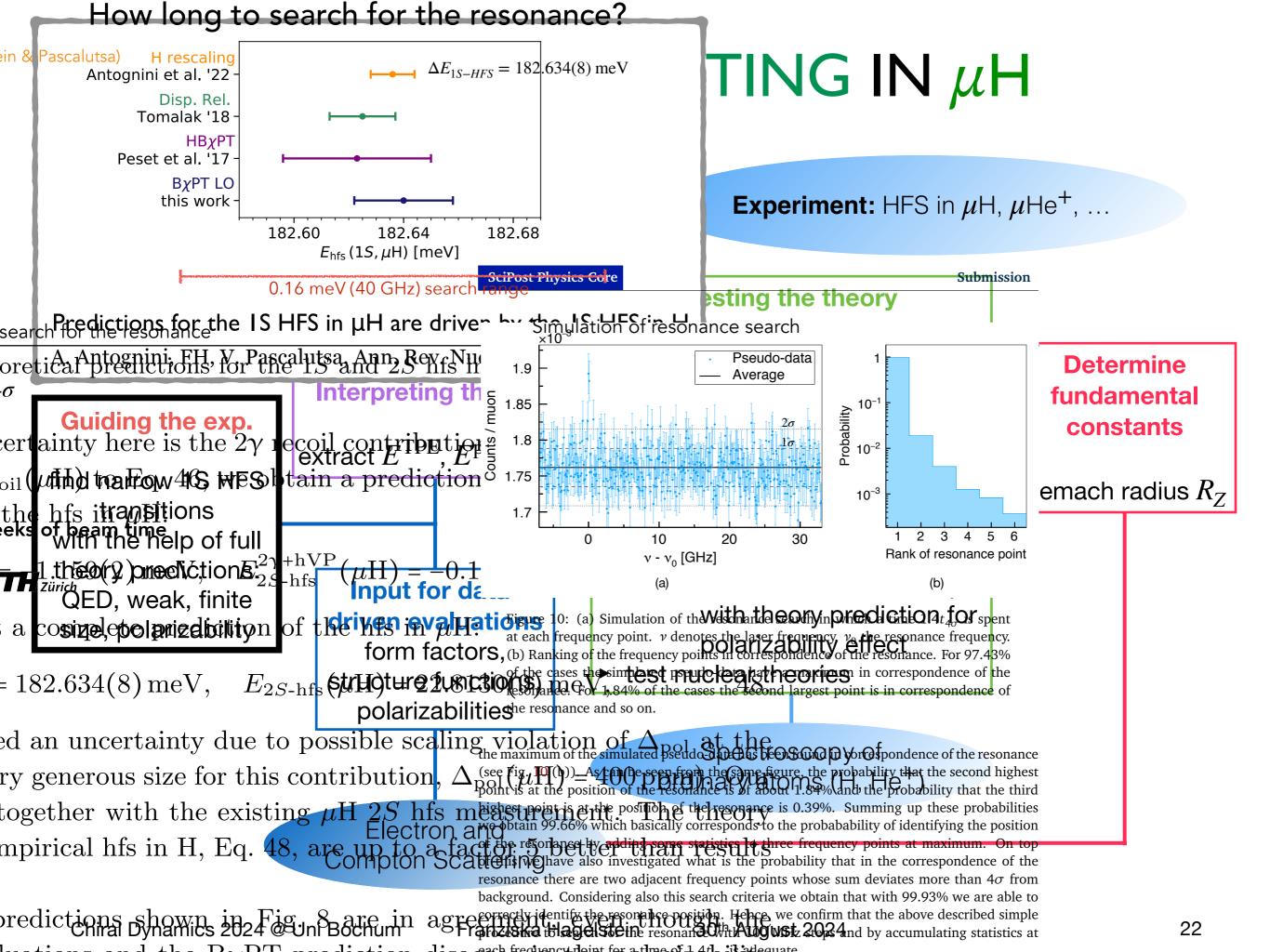
Testing the theory

- discriminate between theory predictions for polarizability effect
 - disentangle R_Z & polarizability effect by combining HFS in H & μ H
- test HFS theory
 - combining HFS in H & μ H with theory prediction for polarizability effect
- ► test nuclear theories

Spectroscopy of ordinary atoms (H, He⁺)

Determine fundamental constants

Zemach radius R_Z



HYPERFINE SPLITTING IN μ H

The hyperfine splitting of μ H (theory update):

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022)

$$E_{1S-\rm hfs} = \left[\underbrace{182.443}_{E_{\rm F}} \underbrace{+1.350(7)}_{\rm QED+weak} \underbrace{+0.004}_{\rm hVP} \underbrace{-1.30653(17)\left(\frac{r_{\rm Zp}}{\rm fm}\right) + E_{\rm F}\left(1.01656(4)\,\Delta_{\rm recoil} + 1.00402\,\Delta_{\rm pol}\right)}_{2\gamma \ \rm incl. \ radiative \ corr.}\right] \text{meV}$$

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability Interpreting the exp.

extract $E^{
m TPE}$, $E^{
m pol.}$ or R_Z

Input for datadriven evaluations

form factors, structure functions, polarizabilities

Electron and Compton Scattering

discriminate between theory predictions for polarizability effect

- disentangle R_Z & polarizability effect by combining HFS in H & μ H
- test HFS theory
 - combining HFS in H & μ H with theory prediction for polarizability effect
- ► test nuclear theories

Spectroscopy of ordinary atoms (H, He⁺)

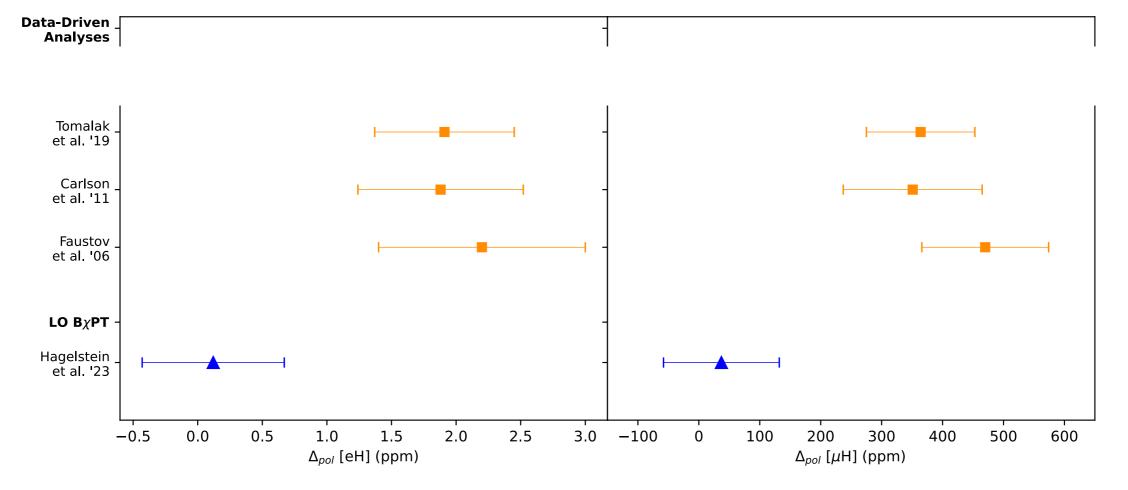
Determine fundamental constants

Zemach radius R_Z

POLARIZABILITY EFFECT IN HFS

Polarizability effect on the HFS is completely constrained by empirical information

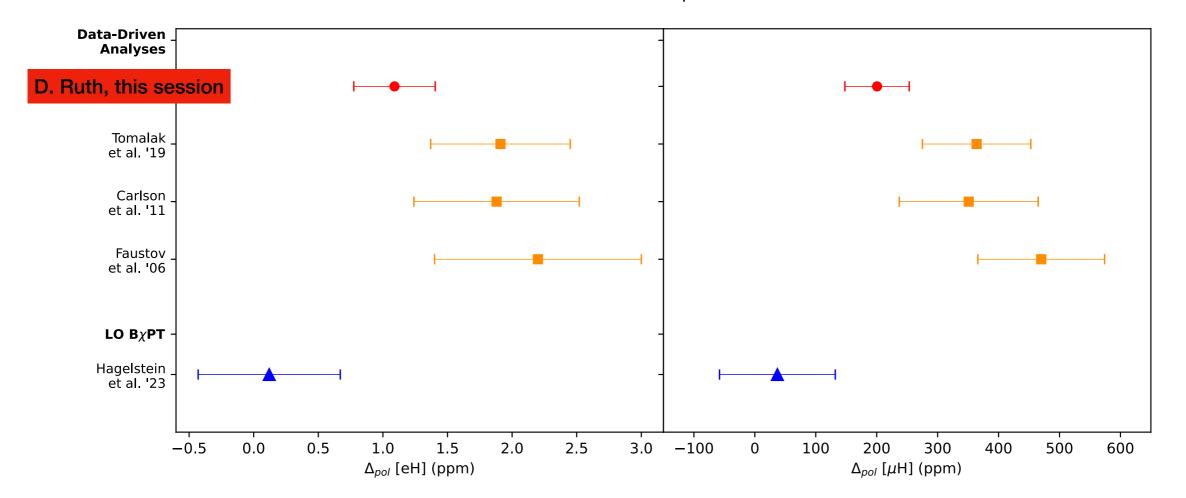
$$\begin{split} & \Delta_{\mathrm{pol.}} = \Delta_1 + \Delta_2 = \frac{\alpha m}{2\pi (1+\kappa) M} \Big(\delta_1 + \delta_2 \Big) \\ & \delta_1 = 2 \int_0^\infty \frac{\mathrm{d} Q}{Q} \left\{ \frac{5 + 4 v_l}{(v_l + 1)^2} \Big[4 I_1(Q^2) + F_2^2(Q^2) \Big] - \frac{32 M^4}{Q^4} \int_0^{x_0} \mathrm{d} x \, x^2 g_1(x, Q^2) \frac{1}{(v_l + v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l + 1} \right) \right\} \\ & \delta_2 = 96 M^2 \int_0^\infty \frac{\mathrm{d} Q}{Q^3} \int_0^{x_0} \mathrm{d} x \, g_2(x, Q^2) \left(\frac{1}{v_l + v_x} - \frac{1}{v_l + 1} \right) \quad \text{with } v_l = \sqrt{1 + \frac{1}{\tau_l}}, v_x = \sqrt{1 + x^2 \tau^{-1}}, \tau_l = \frac{Q^2}{4m^2} \text{ and } \tau = \frac{Q^2}{4M^2} \end{split}$$



POLARIZABILITY EFFECT IN HFS

Polarizability effect on the HFS is completely constrained by empirical information

$$\begin{split} & \Delta_{\mathrm{pol.}} = \Delta_1 + \Delta_2 = \frac{\alpha m}{2\pi (1+\kappa) M} \Big(\delta_1 + \delta_2 \Big) \\ & \delta_1 = 2 \int_0^\infty \frac{\mathrm{d} Q}{Q} \left\{ \frac{5 + 4 v_l}{(v_l + 1)^2} \Big[4 I_1(Q^2) + F_2^2(Q^2) \Big] - \frac{32 M^4}{Q^4} \int_0^{x_0} \mathrm{d} x \, x^2 g_1(x, Q^2) \frac{1}{(v_l + v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l + 1} \right) \right\} \\ & \delta_2 = 96 M^2 \int_0^\infty \frac{\mathrm{d} Q}{Q^3} \int_0^{x_0} \mathrm{d} x \, g_2(x, Q^2) \left(\frac{1}{v_l + v_x} - \frac{1}{v_l + 1} \right) \quad \text{with } v_l = \sqrt{1 + \frac{1}{\tau_l}}, v_x = \sqrt{1 + x^2 \tau^{-1}}, \tau_l = \frac{Q^2}{4m^2} \text{ and } \tau = \frac{Q^2}{4M^2} \end{split}$$



2γ EFFECT IN THE μ H HFS

Table 1 Forward 2γ -exchange contribution to the HFS in μ H.

Reference	$\Delta_{ m Z}$	$\Delta_{ m recoil}$	$\Delta_{ m pol}$	Δ_1	Δ_2	$E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[meV]
DATA-DRIVEN						
Pachucki '96 (1)	-8025	1666	0(658)			-1.160
Faustov et al. '01 (9) ^a	-7180		410(80)	468	-58	
Faustov et al. '06 $(10)^{b}$			470(104)	518	-48	
Carlson et al. '11 $(11)^c$	-7703	931	351(114)	370(112)	-19(19)	-1.171(39)
Tomalak '18 $(12)^d$	-7333(48)	846(6)	364(89)	429(84)	-65(20)	-1.117(19)
HEAVY-BARYON $\chi \mathrm{PT}$						
Peset et al. '17 (13)						-1.161(20)
Leading-order $\chi \mathrm{PT}$						
Hagelstein et al. '16 (14)			37(95)	29(90)	9(29)	
$+\Delta(1232)$ excit.						
Hagelstein et al. '18 (15)			-13	84	-97	

^aAdjusted values: Δ_{pol} and Δ_{1} corrected by -46 ppm as described in Ref. 16.

^bDifferent convention was used to calculate the Pauli form factor contribution to Δ_1 , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

^cElastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution, $(1+\delta_{\rm Z}^{\rm rad})\Delta_{\rm Z}$ with $\delta_{\rm Z}^{\rm rad}\sim 0.0153$ (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

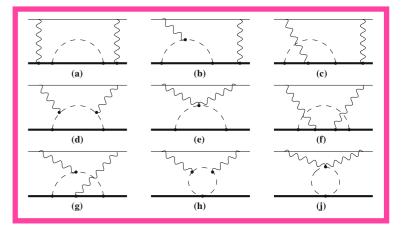
^dUses r_p from μ H (20) as input.

2γ EFFECT IN THE μ H HFS

Table 1 Forward 2γ -exchange contribution to the HFS in μ H.

Reference	$\Delta_{ m Z}$	$\Delta_{ m recoil}$	$\Delta_{ m pol}$	Δ_1	Δ_2	$E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[meV]
DATA-DRIVEN						
Pachucki '96 (1)	-8025	1666	0(658)			-1.160
Faustov et al. '01 (9) ^a	-7180		410(80)	468	-58	
Faustov et al. '06 $(10)^{b}$			470(104)	518	-48	
Carlson et al. '11 $(11)^{c}$	-7703	931	351(114)	370(112)	-19(1	.171(39)
Tomalak '18 $(12)^d$	-7333(48)	846(6)	364(89)	429(84)	-65(20)	-1.117(19)
HEAVY-BARYON $\chi \mathrm{PT}$						
Peset et al. '17 (13)						-1.161(20)
leading-order $\chi { m PT}$						
Hagelstein et al. '16 (14)			37(95)	29(90)	9(29)	
$+\Delta(1232)$ excit.						
Hagelstein et al. '18 (15)			-13	84	-97	

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small!



^aAdjusted values: Δ_{pol} and Δ_{1} corrected by -46 ppm as described in Ref. 16.

^bDifferent convention was used to calculate the Pauli form factor contribution to Δ_1 , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

^cElastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution, $(1+\delta_{\rm Z}^{\rm rad})\Delta_{\rm Z}$ with $\delta_{\rm Z}^{\rm rad}\sim 0.0153$ (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

^dUses r_p from μ H (20) as input.

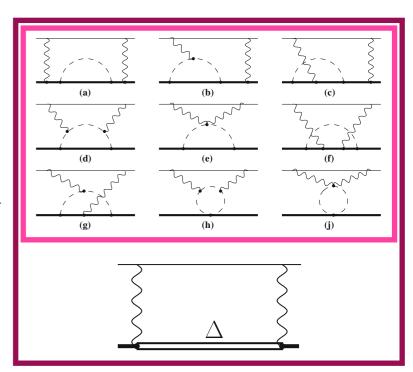
2γ EFFECT IN THE μ H HFS

Table 1 Forward 2γ -exchange contribution to the HFS in μ H.

Reference	$\Delta_{ m Z}$	$\Delta_{ m recoil}$	$\Delta_{ m pol}$	Δ_1	Δ_2	$E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[meV]
DATA-DRIVEN						
Pachucki '96 (1)	-8025	1666	0(658)			-1.160
Faustov et al. '01 (9) ^a	-7180		410(80)	468	-58	
Faustov et al. '06 (10) ^b			470(104)	518	-48	
Carlson et al. '11 (11) ^c	-7703	931	351(114)	370(112)	-19(1	.171(39)
Tomalak '18 $(12)^d$	-7333(48)	846(6)	364(89)	429(84)	-65(20)	-1.117(19)
HEAVY-BARYON χPT						
Peset et al. '17 (13)						-1.161(20)
leading-order $\chi { m PT}$						
Hagelstein et al. '16 (14)			37(95)	29(90)	9(29)	
+ $\Delta(1232)$ excit.						
Hagelstein et al. '18 (15)			-13	84	-97	

^aAdjusted values: Δ_{pol} and Δ_{1} corrected by -46 ppm as described in Ref. 16.

Assuming ChPT is working, it should be best applicable to atomic systems, where the energies are very small!



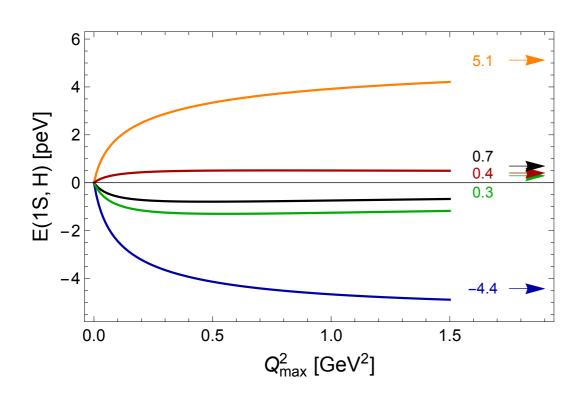
^bDifferent convention was used to calculate the Pauli form factor contribution to Δ_1 , which is equivalent to the approximate formula in the limit of m = 0 used for H in Ref. 11.

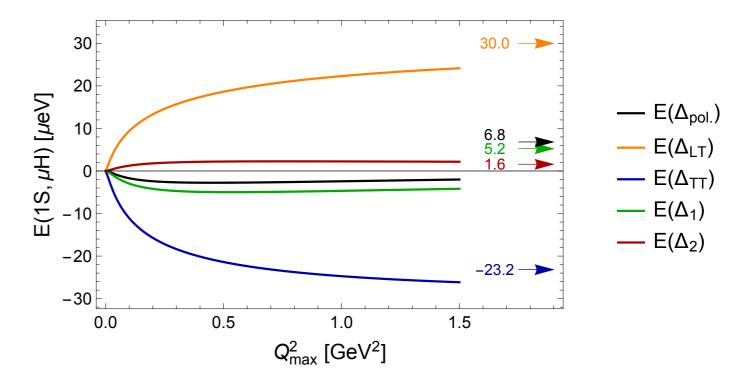
^cElastic form factors from Ref. 17 and updated error analysis from Ref. 16. Note that this result already includes radiative corrections for the Zemach-radius contribution, $(1+\delta_{\rm Z}^{\rm rad})\Delta_{\rm Z}$ with $\delta_{\rm Z}^{\rm rad}\sim 0.0153$ (18, 19), as well as higher-order recoil corrections with the proton anomalous magnetic moment, cf. (11, Eq. 22) and (18).

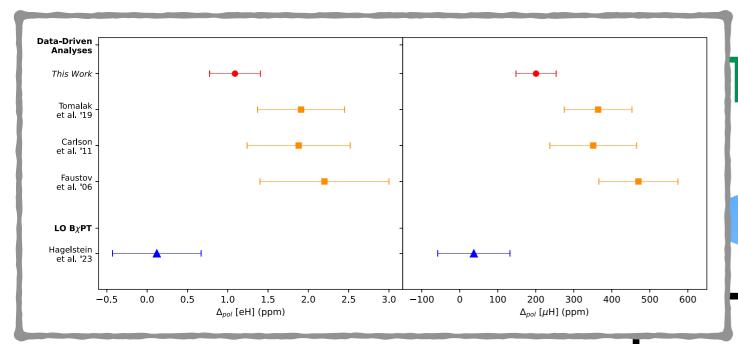
^dUses r_p from μ H (20) as input.

POLARIZABILITY EFFECT FROM BCHPT

- Low-Q region is very important!
- LO BChPT result is compatible with zero
 - Contributions from σ_{LT} and σ_{TT} are sizeable and largely cancel each other







TTING IN μ H

Experiment: HFS in μ H, μ He⁺, ...

Testing the theory

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability Interpreting the exp.

extract E^{TPE} , $E^{\text{pol.}}$ or R_{Z}

Input for datadriven evaluations

form factors, structure functions, polarizabilities

Compton Scattering

- discriminate between theory predictions for polarizability effect
 - disentangle R_Z & polarizability effect by combining HFS in H & μ H
- test HFS theory
 - combining HFS in H & μ H with theory prediction for polarizability effect
- test nuclear theories

ordinary atoms (H, He⁺)

Determine fundamental constants

Zemach radius R_Z

Chiral Dynamics 2024 @ Uni Bochum

Spectroscopy of

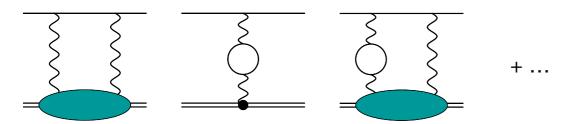
THEORY OF HYPERFINE SPLITTING

A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389-418

The hyperfine splitting of μH (theory update):

$$E_{1S-\rm hfs} = \left[\underbrace{182.443}_{E_{\rm F}} \underbrace{+1.350(7)}_{\rm QED+weak} \underbrace{+0.004}_{\rm hVP} \underbrace{-1.30653(17) \left(\frac{r_{\rm Z}p}{\rm fm}\right) + E_{\rm F} \left(1.01656(4) \, \Delta_{\rm recoil} + 1.00402 \, \Delta_{\rm pol}\right)}_{2\gamma \; \rm incl. \; radiative \; corr.}\right] \; \text{meV}$$

= 2γ + radiative corrections \Longrightarrow differ for H vs. μ H and 1S vs. 2S



The hyperfine splitting of H (theory update):

$$E_{1S-hfs}(H) = \underbrace{\left[\underbrace{1418\,840.082(9)}_{E_{\rm F}} \underbrace{+1612.673(3)}_{\rm QED+weak} \underbrace{+0.274}_{\mu\rm VP} \underbrace{+0.077}_{\rm hVP} \right]}_{\rm pv}$$

$$-54.430(7) \left(\frac{r_{\rm Z}p}{\rm fm}\right) + E_{\rm F}\left(0.99807(13)\,\Delta_{\rm recoil} + 1.00002\,\Delta_{\rm pol}\right) \left] \rm kHz$$

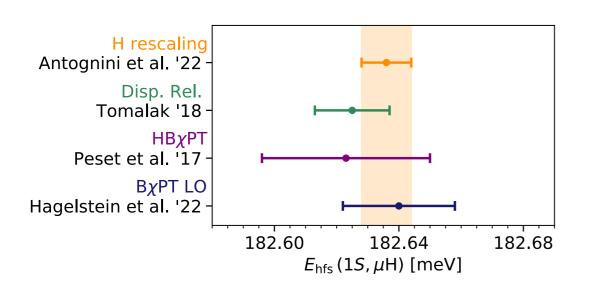
$$2\gamma \; \rm incl. \; radiative \; corr.$$

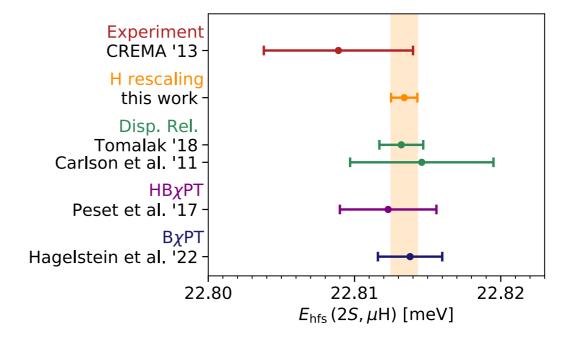
High-precision measurement of the "21cm line" in H:

$$\delta\left(E_{1S-hfs}^{\text{exp.}}(H)\right) = 10^{-12}$$

Hellwig et al., 1970

IMPACT OF H IS HFS





- Leverage radiative corrections $E_{1S-\mathrm{hfs}}^{\mathrm{Z+pol}}(\mathrm{H}) = E_{\mathrm{F}}(\mathrm{H}) \left[b_{1S}(\mathrm{H}) \, \Delta_{\mathrm{Z}}(\mathrm{H}) + c_{1S}(\mathrm{H}) \, \Delta_{\mathrm{pol}}(\mathrm{H}) \right] = -54.900(71) \, \mathrm{kHz}$ and assume the non-recoil $\mathcal{O}(\alpha^5)$ effects have simple scaling $\frac{\Delta_i(\mathrm{H})}{m_r(\mathrm{H})} = \frac{\Delta_i(\mu \mathrm{H})}{m_r(\mu \mathrm{H})}, \quad i = \mathrm{Z, pol}$
 - I. Prediction for μH HFS from empirical IS HFS in H

$$E_{nS-hfs}^{Z+pol}(\mu H) = \frac{E_{F}(\mu H) m_{r}(\mu H) b_{nS}(\mu H)}{n^{3} E_{F}(H) m_{r}(H) b_{1S}(H)} E_{1S-hfs}^{Z+pol}(H) - \frac{E_{F}(\mu H)}{n^{3}} \Delta_{pol}(\mu H)$$

$$= -6 \times 10^{-5} \text{ for } n = 1 = -5 \times 10^{-5} \text{ for } n = 2$$

- 2. Disentangle Zemach radius and polarizability contribution
- 3. Testing the theory

HYPERFINE SPLITTING IN μ H

Theory: QED, ChPT, data-driven dispersion relations, ab-initio few-nucleon theories

Experiment: HFS in μ H, μ He⁺, ...

Guiding the exp.

find narrow 1S HFS transitions with the help of full theory predictions: QED, weak, finite size, polarizability Interpreting the exp.

extract E^{TPE} , $E^{\text{pol.}}$ or R_Z

Input for datadriven evaluations

form factors, structure functions, polarizabilities

Electron and Compton Scattering

Testing the theory

- discriminate between theory predictions for polarizability effect
 - disentangle R_Z & polarizability effect by combining HFS in H & μ H
- test HFS theory
 - combining HFS in H & μ H with theory prediction for polarizability effect
- ► test nuclear theories

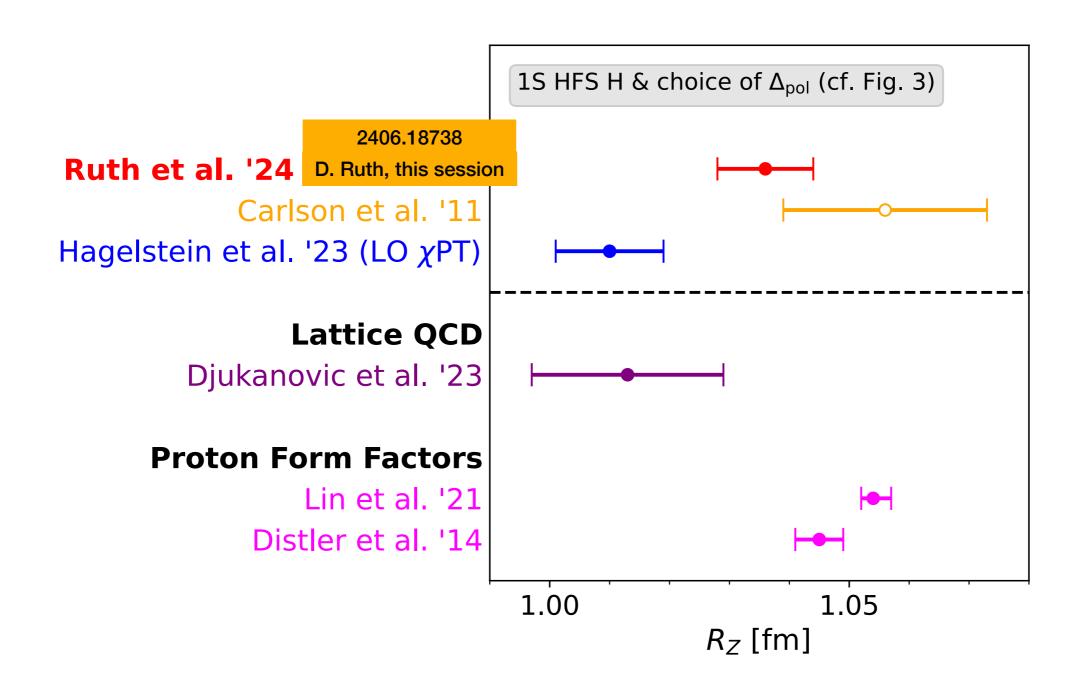
Spectroscopy of ordinary atoms (H, He⁺)

Determine fundamental constants

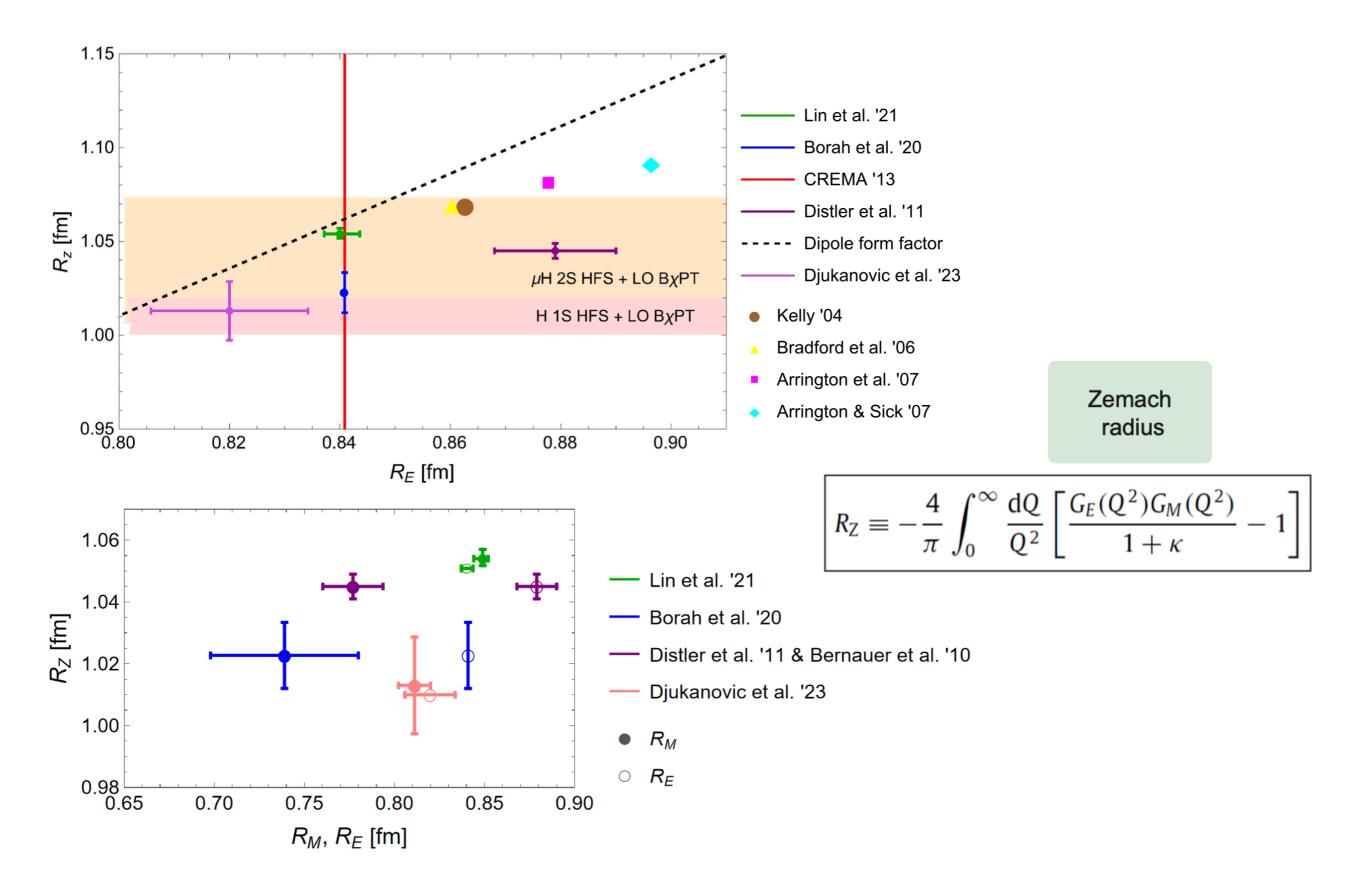
Zemach radius R_Z

PROTON ZEMACH RADIUS

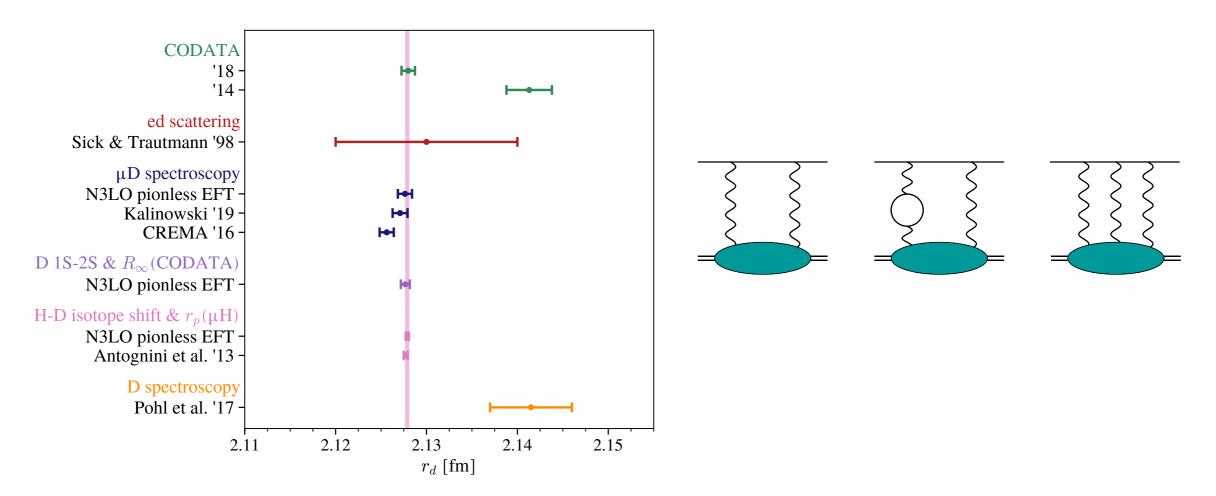
BChPT polarizability prediction implies smaller Zemach radius (smaller, just like r_p)



CORRELATION OF PROTON RADII



DEUTERON CHARGE RADIUS



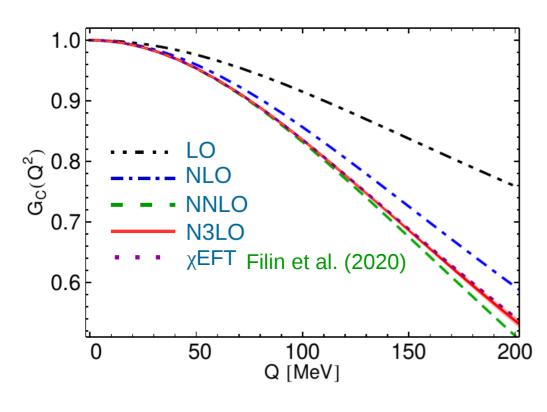
- Precise deuteron radius from H-D IS-2S isotope shift and μH Lamb shift
- Higher-order contributions to μD Lamb shift are important:

$$E_{2P-2S}(\mu D) = \left[228.77408(38) - 6.10801(28) \left(\frac{r_d}{fm} \right)^2 - E_{2S}^{2\gamma} + 0.00219(92) \right] \text{meV}$$

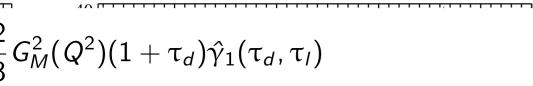
- Coulomb (non-forward) distortion (starting $\alpha^6 \log \alpha$): $E_{2S}^{\text{Coulomb}} = 0.2625(15) \, \text{meV}$
- 2γ incl. eVP and 3γ contributions starting α^6 [Kalinowski, Phys. Rev. A 99 (2019) 030501]

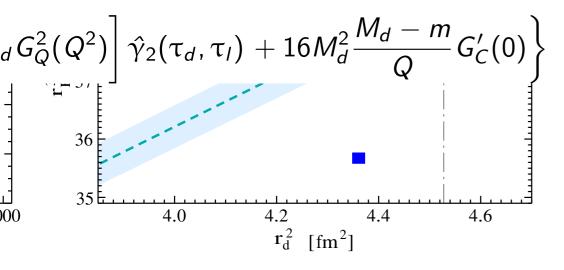
D FORM FACTOR IN PIONLESS EFT

V. Lensky, A. Hiller Blin, V. Pascalutsa, Phys. Rev. C 104 (2021) 054003



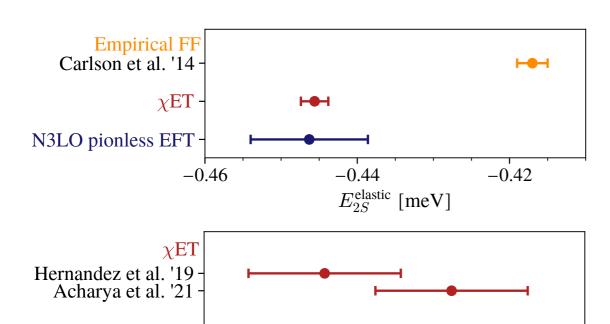
- Only one unknown low-energy constant l_1 of a longitudinal photon coupling to two
 nucleons
- Agreement of chiral EFT and pionless EFT





- Use r_d and $r_{\mathrm{F}d}$ correlation to test low-Q properties of form factor parametrisations
 - Abbott parametrisation gives different radii

2γ EFFECT IN μ D LAMB SHIFT



-1.54

	$E_{2S}^{2\gamma} [\text{meV}]$			
Theory prediction				
Krauth et al. '16 [5]	-1.7096(200)			
Krauth et al. '16 [5] Kalinowski '19 [6, Eq. (6) + (19)] #EFT (this work)	-1.740(21)			
#EFT (this work)	-1.752(20)			
Empirical ($\mu H + iso$)				
Pohl et al. '16 [3]	-1.7638(68)			
This work	$ \begin{vmatrix} -1.7638(68) \\ -1.7585(56) \end{vmatrix} $			

V. Lensky, FH, V. Pascalutsa, EPJ A 58 (2022) 11, 224 and PLB 835 (2022) 137500

N3LO pionless EFT + higher-order single-nucleon effects:

$$E_{2S}^{\text{elastic}} = -0.446(8) \,\text{meV}$$
 $E_{2S}^{\text{inel},L} = -1.509(16) \,\text{meV}$
 $E_{2S}^{\text{inel},T} = -0.005 \,\text{meV}$
 $E_{2S}^{\text{hadr}} = -0.032(6) \,\text{meV}$
 $E_{2S}^{\text{eVP}} = -0.027 \,\text{meV}$

- Elastic 2γ several standard deviations larger
- Inelastic 2γ consistent with other results
- Agreement with precise empirical value for the 2γ effect extracted with $r_d(\mu H + iso)$

N3LO pionless EFT

-1.50

-1.52 $E_{2S}^{\text{inel}} [\text{meV}]$

PRECISION ATOMIC SPECTROSCOPY



A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389

Thank you for your attention!