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• However, terms in the action involving derivatives of the metric fields can also contribute 

to the  in flat spacetime, e.g., consider: . The 

corresponding EMT is obtained as follows:


   

⟨ f |Tμν | i⟩ S = ∫ d4x −g Vαβλ∂αgβλ

Tμν =
2
−g ∫ d4x −g Vαβλ∂α δgβλ

δgμν
|g=η = − ∂α (Vαμν + Vανμ)
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• These couplings are essential to absorb divergences and power counting breaking terms
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+
1
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↔
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S(2)
1,grav = ∫ d4x −g{h1R gαβΨ̄i

αΨi
β + h4Rμν Ψ̄i

μΨi
ν + 2ih5Rμν gαβΨ̄i

αγμ
↔
∇νΨi

β + ih6Rμνgαβ (Ψ̄i
αγμ

→
∇βΨi

ν − Ψ̄i
νγμ

←
∇βΨi

α)

+ih10RμναβΨ̄i
ασμνΨi

β + i [h11 Rμναβ + h12 Rμανβ] (Ψ̄i
αγμ

→
∇νΨi

β − Ψ̄i
βγμ

←
∇νΨi

α) + h13RμανβΨ̄i
αγμγνΨi

β}

S(2)
2,grav = ∫ d4x −g{h2R Ψ̄i

αγαγβΨi
β + ih3R (gαλΨ̄i

αγβ →
∇λΨi

β − gβλΨ̄i
αγα ←

∇λΨi
β) + ih7Rμν (Ψ̄i

αγα →
∇μΨi

ν − Ψ̄i
νγα ←

∇μΨi
α)

+h8Rμν (Ψ̄i
αγαγμΨi

ν + Ψ̄i
νγμγαΨi

α) + ih9Rμν (Ψ̄i
κγκγαγμ

→
∇νΨi

α − Ψ̄i
αγμγαγκ ←

∇νΨi
κ)

+i [h14 Rμναβ + h15 Rμανβ] (Ψ̄i
κγκγμγν

→
∇αΨi

β − Ψ̄i
βγνγμγκ ←

∇αΨi
κ)}

Eur. Phys. J. C 82 
(2022) no.10, 907 
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• To compare the results for the GFFs with and without delta resonances, we fix  from the 
numerical value of the D-term and substitute some values of the unknown LECs in the theory 
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• The LECs of the effective Lagrangian with explicit deltas are obtained from the condition of 
matching physical quantities in theories with and without explicit deltas:
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Double, solid and dashed lines correspond to the deltas, nucleons and pions, respectively, while the curly lines represent gravitons. 
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Part II: Nucleon GFFs

• The difference between the two theories in at least one of the GFFs significantly exceeds the 
expected contributions from higher-order corrections at , from which we can conclude 
that the explicit inclusion of the  resonances is important for the GFFs of the nucleons

Q2 = M2
π

Δ
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• The difference between the two theories in at least one of the GFFs significantly exceeds the 
expected contributions from higher-order corrections at , from which we can conclude 
that the explicit inclusion of the  resonances is important for the GFFs of the nucleons
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• This conclusion is supported by considering the non-analytic contributions to the GFFs in the 
chiral limit, for which all LECs are known and fixed via experiments:











A(t) =
g2

πNΔ

π2F2
πm2

N ( (79δ + 10mN)
5760δ

t2 +
(15δ + 2mN)

2304δ3
t3) ln (−

t
m2

N ) +
3g2

A

512F2
πmN

(−t)3
2 − (c2mN − 10g2

A)
320π2F2

πm2
N

t2 ln (−
t

m2
N ) + 𝒪(t 5

2)

J(t) =
g2

πNΔ (4δ(2δ + mN)t2 + t3)
2304F2

ππ2δ3mN
ln (−

t
m2

N ) −
g2

A

64π2F2
π

t ln (−
t

m2
N ) −

3g2
A

512F2
πmN

(−t)3
2 + 𝒪(t2)

D(t) = −
g2

πNΔ(214δ3 + 10mN(t − 14δ2) + 5δt)
2880F2

ππ2δ3
t ln (−

t
m2

N ) +
3g2

AmN

128F2
π

−t −
(5g2

A + 4 (c2 + 5c3) mN)
160π2F2

π
t ln ( −t

m2
N ) + 𝒪(t 3

2 )
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t −t , F1,1(t) = −
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1mΔ

1536F2
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1mΔ

768F2
−t , F2,1(t) =

5g2
1m3

Δ

384F2

−t
t

F4,0(t) = −
5g2

1

1728π2F2
t ln(−t/m2

N) , F4,1(t) = 0 , F5,0(t) = −
5g2

1mΔ

9216F2
−t
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• The amplitude of the  transition has the following general form p ↦ Δ+

⟨Δ, pf , sf |Tμν |N, pi, si⟩ = ūα(pf , sf ){F1(t)(ηα{μPν} +
m2

Δ+ − m2
p

Δ2
ημνΔα −

m2
Δ+ − m2

p

2Δ2
ηα{μΔν} −

1
Δ2

P{μΔν}Δα)
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ū(pf , sf )Oμντcu(pi, si) (pf + q − pi)μ = 0

• To parametrize  in terms of independent, conserved Lorentz invariant structures we 
introduce the following linearly independent kinematic variables:


 

 , with 

 


 


  and  were chosen so that  and  are orthogonal to 

Oμν

Δ̃ = pf + q − pi , P = pf − q + a pi , Λ = pf + q + b pi

a = − 1 −
2M2

π − 2t
m2

N − s + t̃
, b =

−m2
N + s + t̃

m2
N − s + t̃

a b P Λ Δ̃

Phys. Rev. D 109 
(2024) no.1, 016009

OPGP is accessible in hard 
exclusive processes like the 

non-diagonal DVCS 
( )γ* + N ↦ γ + (πN )



Part V: transition GFFs of the OPGP
• The amplitude of the OPGP has the following general form 


       −i⟨pf , sf , q, c |Tμν |pi, si⟩ = ū(pf , sf ) Oμντc u(pi, si)
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ū(pf , sf )Oμντcu(pi, si) (pf + q − pi)μ = 0

• Moreover, we write  and  in terms of structures that contain γμγ5 γλΔ̃λγ5 ϵαβγκ

• To parametrize  in terms of independent, conserved Lorentz invariant structures we 
introduce the following linearly independent kinematic variables:


 

 , with 

 


 


  and  were chosen so that  and  are orthogonal to 

Oμν

Δ̃ = pf + q − pi , P = pf − q + a pi , Λ = pf + q + b pi

a = − 1 −
2M2

π − 2t
m2

N − s + t̃
, b =

−m2
N + s + t̃

m2
N − s + t̃

a b P Λ Δ̃

Phys. Rev. D 109 
(2024) no.1, 016009

OPGP is accessible in hard 
exclusive processes like the 

non-diagonal DVCS 
( )γ* + N ↦ γ + (πN )



Part V: transition GFFs of the OPGP
• After removing the redundant structures, we find that the most general form of the matrix 

element contains twelve independent structures:



Part V: transition GFFs of the OPGP
• After removing the redundant structures, we find that the most general form of the matrix 

element contains twelve independent structures:

Oμν = {1
2 (f1t̃γ5 +

if2
mN

ϵΔ̃PΛβγβ)PμPν +
1
2 (f3t̃γ5 +

if4
mN

ϵΔ̃PΛβγβ)ΛμΛν +
1
2 (f5t̃γ5 +

if6
mN

ϵΔ̃PΛβγβ)PμΛν

+
1
2 (f7t̃γ5 +

if8
mN

ϵΔ̃PΛβγβ) (t̃ ημν − Δ̃μΔ̃ν) + if9(t̃ϵνPΛβ − ϵΔ̃PΛβΔ̃ν)Pμγβ + if10(t̃ϵνPΛβ − ϵΔ̃PΛβΔ̃ν)Λμγβ

+i(f11 Λμ + f12 Pμ)ϵνΔ̃Λβγβ + μ ↔ ν}



Part V: transition GFFs of the OPGP
• After removing the redundant structures, we find that the most general form of the matrix 

element contains twelve independent structures:

Oμν = {1
2 (f1t̃γ5 +

if2
mN

ϵΔ̃PΛβγβ)PμPν +
1
2 (f3t̃γ5 +

if4
mN

ϵΔ̃PΛβγβ)ΛμΛν +
1
2 (f5t̃γ5 +

if6
mN

ϵΔ̃PΛβγβ)PμΛν

+
1
2 (f7t̃γ5 +

if8
mN

ϵΔ̃PΛβγβ) (t̃ ημν − Δ̃μΔ̃ν) + if9(t̃ϵνPΛβ − ϵΔ̃PΛβΔ̃ν)Pμγβ + if10(t̃ϵνPΛβ − ϵΔ̃PΛβΔ̃ν)Λμγβ

+i(f11 Λμ + f12 Pμ)ϵνΔ̃Λβγβ + μ ↔ ν}
• Where any index  means contraction with the corresponding variable, e.g, ρ ∈ {P, Δ̃, Λ}

ϵνΔ̃Pβ = ϵνακβΔ̃αPκ



Part V: transition GFFs of the OPGP
• After removing the redundant structures, we find that the most general form of the matrix 

element contains twelve independent structures:

Oμν = {1
2 (f1t̃γ5 +

if2
mN

ϵΔ̃PΛβγβ)PμPν +
1
2 (f3t̃γ5 +

if4
mN

ϵΔ̃PΛβγβ)ΛμΛν +
1
2 (f5t̃γ5 +

if6
mN

ϵΔ̃PΛβγβ)PμΛν

+
1
2 (f7t̃γ5 +

if8
mN

ϵΔ̃PΛβγβ) (t̃ ημν − Δ̃μΔ̃ν) + if9(t̃ϵνPΛβ − ϵΔ̃PΛβΔ̃ν)Pμγβ + if10(t̃ϵνPΛβ − ϵΔ̃PΛβΔ̃ν)Λμγβ

+i(f11 Λμ + f12 Pμ)ϵνΔ̃Λβγβ + μ ↔ ν}
• Where any index  means contraction with the corresponding variable, e.g, ρ ∈ {P, Δ̃, Λ}

ϵνΔ̃Pβ = ϵνακβΔ̃αPκ

• In general, one can define  and  differently, such that the parametrization for  remains 
the same, as long as they are linearly independent and orthogonal to  

P Λ Oμν

Δ̃



Comment

„It can be shown that any massless spin-2 field would give rise to a force indistinguishable from 
gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way 

that gravitational interactions do…. Except that the ”spin-2” field from DVCS is many orders of 
magnitude stronger than gravitation. ”

V. Burkert "DVCS and the Gravitational Structure of the Proton 9/22/2018“ :



Comment

„It can be shown that any massless spin-2 field would give rise to a force indistinguishable from 
gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way 

that gravitational interactions do…. Except that the ”spin-2” field from DVCS is many orders of 
magnitude stronger than gravitation. ”

V. Burkert "DVCS and the Gravitational Structure of the Proton 9/22/2018“ :

,,GPDs parameterize the matrix elements of certain non-local operators which can be expanded in terms 
of an infinite tower of local operators with various quantum numbers. This includes operators with the 
quantum numbers of the graviton, and so part of the information about how the proton would interact 

with a graviton is encoded within this tower. ”

V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer, and P. E. Shanahan "Colloquium: Gravitational Form 
Factors of the Proton,'' [arXiv:2303.08347 [hep-ph]]. :



Comment

„It can be shown that any massless spin-2 field would give rise to a force indistinguishable from 
gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way 

that gravitational interactions do…. Except that the ”spin-2” field from DVCS is many orders of 
magnitude stronger than gravitation. ”

V. Burkert "DVCS and the Gravitational Structure of the Proton 9/22/2018“ :

,,GPDs parameterize the matrix elements of certain non-local operators which can be expanded in terms 
of an infinite tower of local operators with various quantum numbers. This includes operators with the 
quantum numbers of the graviton, and so part of the information about how the proton would interact 

with a graviton is encoded within this tower. ”

V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer, and P. E. Shanahan "Colloquium: Gravitational Form 
Factors of the Proton,'' [arXiv:2303.08347 [hep-ph]]. :

For more details, see the talk by Iuliia Panteleeva



Thank you very much for listening!


