
 Gravitational form factors of hadrons within 
chiral EFT

Herzallah Alharazin

Ruhr University Bochum



• In general, the matrix element „ “ is parameterized by the GFFs (  and  are of 
the same type) or by transition GFFs (  and  are not of the same type) 

⟨ f |Tμν | i⟩ i f
i f

Part I: Action in Curved Spacetime



• In general, the matrix element „ “ is parameterized by the GFFs (  and  are of 
the same type) or by transition GFFs (  and  are not of the same type) 

⟨ f |Tμν | i⟩ i f
i f

Bosonic fields                                               Fermionic fields

• The EMT is obtained from the action by:   


    Tμν =
2
−g

δS
δgμν

g=η

∼
1
2e [ δS

δeaμ
ea

ν +
δS

δeaν
ea

μ]
g=η

Part I: Action in Curved Spacetime



• In general, the matrix element „ “ is parameterized by the GFFs (  and  are of 
the same type) or by transition GFFs (  and  are not of the same type) 

⟨ f |Tμν | i⟩ i f
i f

Bosonic fields                                               Fermionic fields

• The EMT is obtained from the action by:   


    Tμν =
2
−g

δS
δgμν

g=η

∼
1
2e [ δS

δeaμ
ea

ν +
δS

δeaν
ea

μ]
g=η

• The EChL at order  is constructed by combining various fields and covariant derivatives to 
form the most general invariant monomials. The number of these monomials is then 
minimized by employing identities and field redefinitions

n

Part I: Action in Curved Spacetime



• In general, the matrix element „ “ is parameterized by the GFFs (  and  are of 
the same type) or by transition GFFs (  and  are not of the same type) 

⟨ f |Tμν | i⟩ i f
i f

Bosonic fields                                               Fermionic fields

• The EMT is obtained from the action by:   


    Tμν =
2
−g

δS
δgμν

g=η

∼
1
2e [ δS

δeaμ
ea

ν +
δS

δeaν
ea

μ]
g=η

• The EChL at order  is constructed by combining various fields and covariant derivatives to 
form the most general invariant monomials. The number of these monomials is then 
minimized by employing identities and field redefinitions

n

• In the literature, the EChL describing pions, nucleons, and deltas in flat spacetime has 
been systematically constructed at least up to fourth order in small quantities

Part I: Action in Curved Spacetime



• In general, the matrix element „ “ is parameterized by the GFFs (  and  are of 
the same type) or by transition GFFs (  and  are not of the same type) 

⟨ f |Tμν | i⟩ i f
i f

Bosonic fields                                               Fermionic fields

• The EMT is obtained from the action by:   


    Tμν =
2
−g

δS
δgμν

g=η

∼
1
2e [ δS

δeaμ
ea

ν +
δS

δeaν
ea

μ]
g=η

• The EChL at order  is constructed by combining various fields and covariant derivatives to 
form the most general invariant monomials. The number of these monomials is then 
minimized by employing identities and field redefinitions

n

• In the literature, the EChL describing pions, nucleons, and deltas in flat spacetime has 
been systematically constructed at least up to fourth order in small quantities

Part I: Action in Curved Spacetime

• However, terms in the action involving derivatives of the metric fields can also contribute 

to the  in flat spacetime, e.g., consider: . The 

corresponding EMT is obtained as follows:
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δgμν
|g=η = − ∂α (Vαμν + Vανμ)
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• These couplings are essential to absorb divergences and power counting breaking terms
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αγμ
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←
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∇αΨi

β − Ψ̄i
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• The LECs of the effective Lagrangian with explicit deltas are obtained from the condition of 
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Q2 = M2
π

Δ



Part II: Nucleon GFFs

• The difference between the two theories in at least one of the GFFs significantly exceeds the 
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• This conclusion is supported by considering the non-analytic contributions to the GFFs in the 
chiral limit, for which all LECs are known and fixed via experiments:











A(t) =
g2

πNΔ

π2F2
πm2

N ( (79δ + 10mN)
5760δ

t2 +
(15δ + 2mN)

2304δ3
t3) ln (−

t
m2

N ) +
3g2

A

512F2
πmN

(−t)3
2 − (c2mN − 10g2

A)
320π2F2

πm2
N

t2 ln (−
t

m2
N ) + 𝒪(t 5

2)

J(t) =
g2

πNΔ (4δ(2δ + mN)t2 + t3)
2304F2

ππ2δ3mN
ln (−

t
m2

N ) −
g2

A

64π2F2
π

t ln (−
t

m2
N ) −

3g2
A

512F2
πmN

(−t)3
2 + 𝒪(t2)

D(t) = −
g2

πNΔ(214δ3 + 10mN(t − 14δ2) + 5δt)
2880F2

ππ2δ3
t ln (−

t
m2

N ) +
3g2

AmN

128F2
π

−t −
(5g2

A + 4 (c2 + 5c3) mN)
160π2F2

π
t ln ( −t

m2
N ) + 𝒪(t 3
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⟨Δ, pf , sf |Tμν |N, pi, si⟩ = ūα(pf , sf ){F1(t)(ηα{μPν} +
m2

Δ+ − m2
p

Δ2
ημνΔα −

m2
Δ+ − m2

p

2Δ2
ηα{μΔν} −

1
Δ2

P{μΔν}Δα)

+F5(t)(P{μγν}Δα +
(m2

Δ+ − m2
p)(mp + mΔ+)
Δ2

ημνΔα −
mp + mΔ+

Δ2
P{μΔν}Δα −

m2
Δ+ − m2

p

2Δ2
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