

Chiral dynamics: Quo vadis ?

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC

by NRW-FAIR

- Ulf-G. Meißner, Chiral dynamics: quo vadis?, CD24, Bochum, BRD, August 28, 2024 -

Contents

- Introductory remarks
- Pion-pion scattering: The posterchild and its offsprings
- Novel insights into the hadron spectrum from chiral dynamics
- Chiral symmetry in nuclear interactions and nuclei
- Chiral dynamics in the Big Bang
- Summary & outlook

Introductory remarks

A small anecdote

• The first paper with "chiral perturbation theory" in the title

Phys. Rev. D 3 (1971) 1996

• Possible consequences:

 \hookrightarrow stop the talk here

\hookrightarrow don't always listen to Bonn people

What does "chiral dynamics" mean?

- First used in a paper by Julian Schwinger (1967)
- Historically, this was not the accepted terminology
- My view on this:
 - Chiral perturbation theory (CHPT)
 - \rightarrow strict perturbative expansion in (a) small parameter(s)
 - Chiral dynamics
 - \rightarrow involves some non-perturbative resummation
- Scan insirehep for "t chiral perturbation theory" or "t chiral dynamics" and look for the top entries [not to mention chiral effective Lagrangians, chiral effective field theory,...]

This note was stimulated by some recent work of Weinberg [1]. He has shown how the results of current-algebra can be easily reproduced by certain calculational rules used in conjunction with an appropriate Lagrange function. Current-algebra is still considered primary, however. I propose to further this simplification and clarification by eliminating all reference to current-algebra. The non-operator method that replaces it is the phenomenological source theory now under development [2]. For our present purposes, however, it suffices to think of a numerical effective Lagrange function, the coupling

terms of which are directly applicable to the corresponding processes **.

CHIRAL DYNAMICS

PHYSICS LETTERS

Volume 24B, number 9

of A1 as the axial partner of O

J.SCHWINGER* Harvard University, Cambridge. Massachusetts

Received 6 April 1967

The cumbersome operator techniques and weak interaction orientation of current algebra are replaced by a non-operator method based on strong interaction phenomenology. Some new results include alternative possibilities of $\pi \pi$ scattering lengths, and a treatment of ρ and A i decay widths that supports the interpretation

1 May 1967

5

Some statistics

• Chiral perturbation theory

• Chiral dynamics

Baryon chiral perturbation theory in manifestly Lorentz invariant form		#3	Chiral dynamics of the two Lambda(1405) states D. Jido (Osaka U., Res. Ctr. Nucl. Phys. and Valencia U. and Valencia U., IFIC), J.A. Oller (Murcia U.), E. Oset (Valencia U. and V ECM), U.G. Meissner (Bonn U., HISKP) (Mar, 2003) Publiched in: <i>Nucl. Phys.</i> 637 (2003) 182-001, ep. Phys. Rev. 14, 1032062 [nucl.th]	/alencia U., IFIC), A. Ram	#1 os (Barcelona U.,
Published in: <i>Eur.Phys.J.C</i> 9 (1999) 643-671 • e-Print: hep-ph/9901384 [hep-ph]				E	. 770 -14-41
🛿 pdf 🔗 DOI 🖃 cite 🗒 claim	🗟 reference search	€) 619 citations		Ed reference search	- 730 citations
Chiral perturbation theory A. Pich (Valencia U.) (Feb, 1995) Published in: Rept.Prog.Phys. 58 (1995) 563-610 • e-Print: hep-ph/9502366 [hep-ph] [b] pdf	명 reference search	#4	Chiral dynamics in the presence of bound states: Kaon nucleon interactions revisited J.A. Oller (Julich, Forschungszentrum), Ulf G. Meissner (Julich, Forschungszentrum) (Nov, 2000) Published in: Phys.Lett.B 500 (2001) 263-272 • e-Print: hep-ph/0011146 [hep-ph] D pdf & DOI ⊑ cite 🔀 claim	쿦 reference search	#2 • 929 citations
Chiral perturbation theory G. Ecker (Vienna U.) (Dec, 1994) Published in: Prog.Part.Nucl.Phys. 35 (1995) 1-80 • e-Print: hep-ph/9501357 [hep-ph] Draft DDI Ecite DCI Colum	2 reference search	#5	Chiral dynamics and the low-energy kaon - nucleon interaction Norbert Kaiser (Munich, Tech. U.), P.B. Siegel (Munich, Tech. U.), W. Weise (Munich, Tech. U.) (May, 1995) Published in: Nucl.Phys.A 594 (1995) 325-345 • e-Print: nucl-th/9505043 [nucl-th] D pdf \mathcal{O} DOI C ite Claim	🛱 reference search	#3 748 citations
Chiral perturbation theory for hadrons containing a heavy quark Mark B. Wise (Caltech) (Jan 31, 1992) Published in: Phys.Rev. D 45 (1992) 7, R2188		#6	The Spectrum of the nucleons and the strange hyperons and chiral dynamics L.Ya. Glozman (Graz U. and Inst. Power Eng. Almaty), D.O. Riska (Washington U., Seattle and Helsinki U.) (May, 1995) Published in: Phys.Rept. 268 (1996) 263-303 • e-Print: hep-ph/9505422 [hep-ph] D pdf POI C itel Claim	ন্থি reference search	#4 Ə 718 citations
Appril Ør blin E tree E stann Baryon chiral perturbation theory using a heavy fermion Lagrangian Elizabeth Ellen Jenkins (UC, San Diego), Aneesh V. Manohar (UC, San Diego) (Nov, 1990) Published in: Phys.Lett.B 255 (1991) 558-562 Ø DOI E cite Ø DOI E cite	C4 reference search	 2) 889 citations #7 1,154 citations 	Chiral dynamics in nucleons and nuclei V. Bernard (Strasbourg, CRN), Norbert Kalser (Munich, Tech. U.), Ulf-G. Meissner (Bonn U.) (Jan, 1995) Published in: Int.J.Mod.Phys.E 4 (1995) 193-346 • e-Print: hep-ph/9501384 [hep-ph] D pdf & DOI C cite Claim	রি reference search	#5
The Role of Resonances in Chiral Perturbation Theory G. Ecker (Vienna U.), J. Gasser (Bern U.), A. Pich (CERN), E. de Rafael (Marseille, CPT) (Sep, 1988) Published in: <i>Nucl.Phys.B</i> 321 (1989) 311-342	E reference courch	#8	Heavy quark symmetry and chiral dynamics Tung-Mow Yan (Taiwan, Inst. Phys. and Cornell U., LNS), Hai-Yang Cheng (Taiwan, Inst. Phys.), Chi-Yee Cheung (Taiwan, Inst. F Lin (Taiwan, Natl. Central U.) et al. (Mar 10, 1992) Published in: Phys.Rev.D 46 (1992) 1148-1164, Phys.Rev.D 55 (1997) 5851 (erratum) Diraction of the context of th	hys.), Guey-Lin Lin (Taiwa	#6 an, Inst. Phys.), Y.C.
Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark J. Gasser (Bern U.), H. Leutwyler (CERN) (Jan, 1984) Published in: <i>Nucl.Phys.B</i> 250 (1985) 465-516	La reference search	#9	Chiral Dynamics in the Large n Limit P. Di Vecchia (Freie U., Berlin), G. Veneziano (CERN) (Feb, 1980) Published in: <i>Nucl.Phys.B</i> 171 (1980) 253-272	Lo, reference search	#7
🖉 DOI 🖻 cite 🔹 claim	🗟 reference search		🖉 DOI 🖻 cite 🗒 claim	🗟 reference search	
Chiral Perturbation Theory to One Loop J. Gasser (Bern U.), H. Leutwyler (CERN) (Aug, 1983) Published In: Annals Phys. 156 (1984) 142		#10	Large N Chiral Dynamics Edward Witten (Harvard U.) (Jan, 1980) Published in: Annals Phys. 128 (1980) 363		#8
🔄 par 🕜 DOI 🕒 cite 🔂 claim	Ed reference search	→ 4,757 citations	La pdf & DOI La cite 🔀 claim	🖸 reference search	→ 713 citations

\hookrightarrow will talk here about **chiral dynamics** in the broader sense

Pion-pion scattering: The posterchild and its offsprings

Elastic pion-pion scattering @ threshold

• Purest process in two-flavor chiral dynamics (really light quarks)

[CD2012, CD2018]

- Scattering amplitude at threshold: two numbers (a_0, a_2)
- History of the prediction for a_0 based on CHPT:

LO (tree):	$a_0 = 0.16$	Weinberg 1966
NLO (1-loop):	$a_0=0.20\pm 0.01$	Gasser, Leutwyler 1983
NNLO (2-loop):	$a_0 = 0.217 \pm 0.009$	Bijnens et al. 1996

 \hookrightarrow In CA, pion-pion scattering the most complicated case for pion-hadron scattering \hookrightarrow fairly large corrections from LO to NLO \rightarrow strong final-state interactions \hookrightarrow still sizeable corrections at NNLO despite $(M_{\pi}/\Lambda_{\chi})^2 \simeq 0.14^2 \simeq 0.02$ • a_2 is small and exhibits very small corrections (will not be considered further)

Elastic pion-pion scattering: the first offspring

Donoghue, Gasser, Leutwyler, UGM, Truong, Pelaez, Büttiker, Ananthanarayan...

- Combine CHPT with dispersion relations to
 - extend the range of applicability
 - increase the precision

• For $\pi\pi \to \pi\pi$: match 2-loop representation to the Roy equation solution

 $a_0 = 0.220 \pm 0.005$

Colangelo, Gasser, Leutwyler (2000)

• And more: pin down the the lowest resonance in QCD [nowadays called $f_0(500)$]

 $M_{\sigma}=441^{+16}_{-8}\,{
m MeV}$ $\Gamma_{\sigma}=272^{+9}_{-13}\,{
m MeV}$

Caprini, Colangelo, Leutwyler (2006)

20

-20

lms

- Ulf-G. Meißner, Chiral dynamics: quo vadis?, CD24, Bochum, BRD, August 28, 2024 -

Elastic pion-pion scattering: further offsprings I

Colangelo, Gasser, Ivanov, Kubis, UGM, Raha, Rusetsky, Schweitzer, ...

- Develop NREFTs to better access low-energy $\pi\pi$ scattering
- Theory of hadronic atoms (scattering at zero energy)
- \hookrightarrow Bound state properties with complex LECs
- \hookrightarrow Beyond the Deser formula: high-precision achieved
- \hookrightarrow Relevant for $\pi\pi$, πK , πN , πd , Kp, Kd
- Experiment for pionium:

$$|a_0 - a_2| = 0.2533^{+0.0107}_{-0.0137}$$

• Same for πK (a separate talk):

$$rac{1}{3}|a_0^{1/2}-a_0^{3/2}|=0.072^{+0.031}_{-0.020}$$

Adeva et al. [DIRAC Coll.] Phys. Lett. B704 (2011) 24 Schweizer, Phys. Lett. B **587** (2004) 33

[CHPT: 0.073(2)]

Yazkov [DIRAC Coll.] EPJ Web of Conferences 181 (2018)

Bernard, Kaiser, UGM, Nucl. Phys. B 357 (1991) 129

- Ulf-G. Meißner, Chiral dynamics: quo vadis?, CD24, Bochum, BRD, August 28, 2024 -

Elastic pion-pion scattering: further offsprings II

Budini, Fonda, Cabbibo, Colangelo, Gasser, Kubis, UGM, Rusetsky, Steininger, ...

- ullet Cusps in kaon decays using NREFT ($K
 ightarrow 3\pi$)
- $\hookrightarrow \mathsf{Quickly} \text{ converging approach}$
- \hookrightarrow Used to analyze large data set from NA48 at CERN
- Combine with FSI in K_{e4} decays:

 $a_0 = 0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m sys}$

Batley et al. [NA48/2 Coll.] Eur. Phys. J. C 70 (2010) 635

- Experiment and chiral dynamics well aligned, how about the lattice? → next slide
- Cusp also prominent in CHPT analysis of $\gamma p o \pi^0 p$ Bernard, Kubis, UGM, Eur. Phys. J. A 25 (2005) 419
- Cusps play a much bigger role now → exotic hadrons
 Guo, Liu, Sakai, Prog. Part. Nucl. Phys. **112** (2020) 103757

Elastic pion-pion scattering on the lattice - history

- The interesting observable a₀ took a long time (disconnected diagrams)
- My talk at CD2012@JLab:
 no direct a₀ determinations

 My talk at CD2018@Duke Univ.:
 2 unquenched QCD simulations, but errors doubtful

Author(s)	a_0	Pion mass range
Fu	0.214(4)(7)	240 - 430 MeV
Liu et al.	0.198(9)(6)	250 - 320 MeV

Fu, Phys. Rev. D **87** (2013) 074501 Liu et al., Phys. Rev. D **96** (2017) 054516

Fig. courtesy H. Leutwyler

Elastic pion-pion scattering on the lattice - now

- Now a number of better simulations available, still chiral extrapolation needed
- Focus here on the work of the GW group (S- and P-waves, incl. resonances)
- I = 0 S-wave:
- $a_0 = 0.2132^{+0.0008}_{-0.0009}$ $M_\sigma = 443(3) i\,221(6)\,{
 m MeV}$

 $\hookrightarrow \text{central values fine}$

 \hookrightarrow errors too small

Mai, Culver, Alexandru, Döring, Lee, Phys. Rev. D 100 (2019) 114514

- A real problem: ho mass too small $M_
 ho = (724^{+2}_{-4} i\,67^{+1}_{-1})\,{
 m MeV}$
- A recent calc. at the physical point: $M_
 ho=796(5)(50)-i\,96(5)(16)\,$ MeV Boyle et al., arXiv:2406.19194

 \hookrightarrow we are still not done, LQCD people need to work harder!

Novel insights into the hadron spectrum from chiral dynamics

Hadron resonances in chiral dynamics - basics

- In CHPT, resonances are a limit, not active dofs!
- Be aware of the decoupling theorem:

Gasser, Zepeda (1980)

The leading non-analytic terms stem from Goldstone boson one-loop graphs coupled to Goldstone bosons or ground state baryons

 \hookrightarrow Resonances must decouple (sometimes overlooked)

 \hookrightarrow Cuts and poles generated by GBs are not affected by resonances

↔ Resonances saturate most of the LECs Donoghue, Holstein, Gass

Donoghue, Holstein, Gasser, Leutwyler, Ecker, Pich,...

 \hookrightarrow QCD chiral and large- N_C limits do not commute

• Still, we want to go beyond the GB (+ ground state baryon octet) theory

Including hadron resonances into chiral dynamics

• There are essentially 3 ways of including resonances:

- Inclusion as matter fields, mostly $\Delta(1232)$, see my talk at CD2018

→ requires an extended power counting and/or complex-mass scheme
Jenkins, Manohar, Bernard, Kaiser, UGM, Hemmert, Holstein, Kambor, Gegelia, Phillips, Pascalutsa,...

In a few cases, CHPT combined w/ dispersion relations allows to study resonances

 $f_o(500),\,f_0(980),\,
ho(770),\,K_0^*(700),\,K^*(890),ig(\Delta,N^*(1440)ig) o$ next slide

Caprini, Colangelo, Leutwyler, Pelaez, Rodas, Hoferichter, Ruiz de Elvira, Kubis, UGM,...

16

 \hookrightarrow of course, DRs are a fine tool to study resonances in general (but limited)

- Single channel unitarization and coupled-channel chiral dynamics (non-pert. unitarity)

 \hookrightarrow allows to study certain resonances (ho, σ ,..)

 \hookrightarrow allows to deal with strange baryons

Truong, Dobado, Herrera, Oset, Oller, Pelaez, Gasser, UGM, ... **Kaiser, Siegel, Weise**, Ramos, Oset, Oller, UGM, Lutz, Kolomeitsev, Hosaka, Jido, Hyodo,...

$\pi N ightarrow \pi N$: Dispersion relations matched to CHPT $^{_{17}}$

Hoferichter, Ruiz de Elvira, Kubis, UGM; Büttiker

• The Roy equation program can also be performed in the pion-nucleon system

 \hookrightarrow Roy-Steiner equations for $\pi N o \pi N o \pm$ talk by J. Ruiz de Elvira

- Many results, I just list three of relevance for this talk:
 - High-precision determination of the σ term: $\sigma_{\pi N} = 59.0(3.5)$ MeV
 - High-precision determination of the LECs c_i [in GeV⁻¹] from $\mathcal{L}_{\pi N}^{(2)}$

$$egin{aligned} c_1 &= 1.10(3) \;, \quad c_2 &= 3.57(4) \ c_3 &= -5.54(6) \;, \;\; c_4 &= 4.17(4) \end{aligned}$$

- the lowest nucleon resonances & couplings $M_{\Delta} = (1209.5(1.1) + i\,98.5(1.2))\,{
m MeV}$ $M_R = (1374(3)(4) + i\,215(18)(8))\,{
m MeV}$

Hadron resonances in chiral dynamics - coupled channels

Kaiser, Siegel, Weise, Ramos, Oset, Oller, UGM, Lutz, Kolomeitsev, Hosaka, Jido, Hyodo,...

• Basic idea of coupled-channel chiral dynamics:

- \hookrightarrow use CHPT to construct the potential $V = V_{LO} + V_{NLO} + ...$, then resum
- \hookrightarrow often on-shell approximation: T = V/[1 + GV] [all matrices]
- \hookrightarrow resummation requires regularization \rightarrow different approaches of different quality used
- \hookrightarrow generation of resonances, in particular the elusive $\Lambda(1405)$
- \hookrightarrow extension to heavy-light mesons
 - Burdman, Cheng, Donoghue, Du, Guo, Hanhart, Lutz, Nieves, Wise, Yan, Yao, Zou, ...
- \hookrightarrow a new player in hadron spectroscopy: **two-pole structures**

 \rightarrow talk by Lisheng Geng

The first two-pole structure from chiral dynamics I

ullet Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$

Oller, UGM Phys. Lett. B 500 (2001) 263

- A number of technical improvements:
 - Subtracted meson-baryon loop with dim reg \hookrightarrow standard method
 - Coupled-channel approach to the $\pi\Sigma$ mass distribution
 - Matching formulas to any order in chiral perturbation theory established

19

The first two-pole structure from chiral dynamics II

• Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$

Oller, UGM Phys. Lett. B 500 (2001) 263

• Most significant finding:

"Note that the $\Lambda(1405)$ resonance is described by two poles on sheets II and III with rather different imaginary parts indicating a clear departure from the Breit-Wigner situation..."

 \hookrightarrow Pole locations:

Pole 1: (1379.2 - i27.6) MeV on RS II

Pole 2: (1433.7 - i11.0) MeV on RS II

↔ Chiral dynamics generates two poles, but: how?

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

SU(3) symmetry considerations - details

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

• SU(3) limit: $m_u = m_d = m_s \neq 0$

 \hookrightarrow all GB mesons have equal mass M_0 , all octet baryons have equal mass m_0

 \hookrightarrow more details and recent developments, see UGM, Symmetry **12** (2020) 981, and talk by Geng

Chiral symmetry in nuclear interactions and nuclei

The pion in nuclei: some history

- The pion was predicted as the strong force carrier by Yukawa in 1935
- Found in emulsion experiments in 1947 Lattes et al. (1947)
- Established in nuclei in resolving
 - the $np
 ightarrow d\gamma$ XS discrepancy

 $\sigma_{
m exp}=334.2(5)\,{
m mb}$

- $\sigma_{\mathrm{IA}}=302.5(4.0)\,$ mb
- → MECs are just provide the missing 10%
 Riska, Brown (1972), Gari, Hyuga (1973)
- \hookrightarrow Pions in nuclei firmly established
- Then came the 1993 shock:
- \hookrightarrow a number of (questionable?) solutions,
 - but let us return back to chiral symmetry!

PERSPECTIVES Where Are the Nuclear Pions?

George F. Bertsch, Leonid Frankfurt, Mark Strikman

Science 259 (1993) 773

Chiral symmetry in nuclear interactions

- Chiral symmetry breaking in QCD relates *many* processes
- One of the best examples: dimension-two vertices from the effective πN Lagrangian ($\sim c_i$)

 $\pi N
ightarrow \pi N$ NN
ightarrow NN 3N-force

- Strategy: Fix in $\pi N
 ightarrow \pi N$ and the explore in few-nucleon interactions
 - \hookrightarrow the first step has been done most precisely using Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rev. Lett. 115 (2015) 192301; Phys. Rept. 625 (2016) 1

- \hookrightarrow now let us see how this is reflected in the NN interaction
- ↔ no time for the 3NFs, ask the locals: Hermann Krebs, Evgeny Epelbaum,...

Weinberg

Two-pion exchanges in the nuclear interactions

• Has already been studied earlier, not at high orders/precision

Kaiser, Gerstendorfer, Weise, Nucl. Phys. A 637 (1998) 395,

Now let us look at N4LO and N4LO+ potentials:

Epelbaum, Krebs, UGM, Phys. Rev. Lett. 115 (2015) 122301; Reinert, Krebs, Epelbaum, Eur. Phys. J. A 54 (2018) 86

- \hookrightarrow leading two-pion exchanges $\sim c_i$ and $\sim d_i$ appear at N2LO and N4LO
- \hookrightarrow parameter-free contributions at N2LO and N4LO from TPE

$E_{ m lab}$ bin	LO	NLO	$N^{2}LO$	N ³ LO	N^4LO	N ⁴ LO+	
neutron-	proton p	hase shi	fts				-
0–100	73	2.2	1.2	1.08	1.07	1.08	
0–200	62	5.4	1.7	1.10	1.08	1.07	
0–300	75	14 $ ightarrow$	4.1	2.01 →	1.16	1.06	
proton-p	roton ph	ase shift	S				-
0–100	2290	10	2.2	0.90	0.88	0.86	
0–200	1770	90	37	1.99	1.42	0.95	
0–300	1380	$91 \rightarrow$	41	3.43 ightarrow	1.67	1.00	

 \hookrightarrow clear sign of TPE (not an absolute measure!)

Pions in nuclear structure

• Are pions really required?

 \hookrightarrow many relativistic mean-field models (σ, ω, ρ) work quite well

Walecka, Serot, Ring, Schuck, Meng, Geng, Zhao, ...

 \hookrightarrow nuclear physics is close to the unitary limit \rightarrow contact interactions

Bedaque, Hammer, van Kolck, Grießhammer, König, ...

← the minimal nuclear interaction of NLEFT → see Dean Lee's talk for intro and more

• Highly SU(4) symmetric LO action without pions, only **four** parameters

$$egin{aligned} H_{\mathrm{SU}(4)} &= H_{\mathrm{free}} + rac{1}{2!} C_2 \sum_n ilde{
ho}(n)^2 + rac{1}{3!} C_3 \sum_n ilde{
ho}(n)^3 \ & ilde{
ho}(n) = \sum_i ilde{a}_i^\dagger(n) ilde{a}_i(n) + rac{s_L}{|n'-n|=1} \sum_i \sum_n ilde{a}_i^\dagger(n') ilde{a}_i(n') \ & ilde{a}_i(n) = a_i(n) + rac{s_{NL}}{|n'-n|=1} a_i(n') \ & ilde{a}_i(n') \end{aligned}$$

 \rightarrow describes binding energies, radii, charge densities and the EoS of neutron matter

The minimal nuclear interaction

• Works astonishingly well

Lu, Li, Elhatisari, Epelbaum, Lee, UGM, Phys. Lett. B 797 (2019) 134863

• Even works for em transitions/ solves a puzzle

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

UGM, Shen, Elhatisari, Lee, Phys. Rev. Lett. 132 (2024) 062501

Pions strike back – wavefunction matching

- So pions don't seem to be needed?
 - \hookrightarrow no, because there are much different nuclear systems
 - \hookrightarrow no, the precision is limited
- Wavefunction matching at N3LO
 - \hookrightarrow the soft Hamiltonian requires pions!
 - $H_{\text{soft}} = K + V_{\text{OPE}} + V_{\text{Coulomb}}$
 - $+\underbrace{V_{3\mathrm{N}}^{\mathrm{Q}^{3}}+V_{2\mathrm{N}}^{\mathrm{Q}^{4}}+W_{2\mathrm{N}}^{\mathrm{Q}^{4}}}_{\mathbf{X}}$

SU(4)-symmetric

→ see also Dean Lee's talk!

 \hookrightarrow properly regulated!

 \hookrightarrow fit smeared 3NFs to g.s. energies $A = 3 - 58 \rightarrow$ make predictions

Predictions from wavefunction matching

• Nuclear charge radii and the EoSs of nuclear and neutron matter

- \hookrightarrow Pions to the rescue they are there!
- \hookrightarrow Much more results available \rightarrow Dean Lee's talk
- \hookrightarrow To do list (work in progress):
 - full chiral NN force and currents
 - 3NFs can still be improved
 - Nuclear reactions with N3LO forces, show one appetizer

- Ulf-G. Meißner, Chiral dynamics: quo vadis?, CD24, Bochum, BRD, August 28, 2024 -

Alpha-carbon scattering at N3LO

Elhatisari, Hildenbrand, UGM, ... NLEFT, in progress

- Use the Adiabatic Projection Method, first step for the holy grail of nuclear astrophysics
 - $\hookrightarrow \text{different Euclidean times \& different initial states}$

Plaga et al., Nucl. Phys. A 465 (1987) 291

 $\psi_A \sim^{16}$ O, $\psi_B \sim^{12}$ C $+^4$ He

Chiral dynamics in the Big Bang

Element generation

- Elements are generated in the Big Bang & in stars through the **fusion** of protons & nuclei
 [pp chain or CNO-cycle]
- All is simple until ⁴He
- Only elements up to Be are produced in the Big Bang [BBNucleosynthesis]
- How fine-tuned is the BBNucleosythesis?
- Depends on
 - \hookrightarrow the Higgs VEV v (light quark mass)

$$egin{array}{c} m_f = g_f \, v \end{array}$$

 \hookrightarrow the em fine-structure constant $lpha_{\mathbf{EM}}$

[[]from Wikipedia]

Pion mass dependence in nuclear systems I

- Consider M_{π} changes as *small perturbations*
- Pion mass from CHPT + LQCD
- Nucleon mass from LQCD (guided by CHPT)
- Axial-vector coupling from LQCD (or two-loop CHPT)
- Neutron-proton mass splitting from Cottingham SR

Gasser, Leutwyler, Rusetsky, Phys. Lett. B 814 (2021) 136087

$$Q_N = m_n - m_p = (1.87 \mp 0.16) \left(1 + rac{\delta v}{v}
ight)$$
 [as usual: keep Yukawas fixed]

$$\hookrightarrow m_p(\delta v) = m_N(\delta v) - Q_N(\delta v)/2 \ , \ \ m_n(\delta v) = m_p(\delta v) + Q_N(\delta v)$$

Meyer, UGM, JHEP 06 (2024) 074 \rightarrow more details in Helen Meyer's talk!

Pion mass dependence in nuclear systems II

\bullet More tricky: NN contact terms and deuteron BE \rightarrow resort to LQCD + LETs

Baru, Epelbaum, Filin, Gegelia (2015,2016)

• Also important: Neutron lifetime and $np ightarrow d\gamma$ (deuterium bottleneck)

\hookrightarrow insert into the BBN network and see how abundances vary

• Study the Higgs VEV limits on $\delta v/v$ from the deuterium & ⁴He abundances

	⁴ He	d
PDG	-0.014, 0.026	-0.005, -0.001
EMPRESS	0.011, 0.055	

PDG: Workman et al., Review of Particle Physics, PTEP 2022 (2022) 083C01 EMPRESS: Matsumoto et al., Astrophys. J. 941 (2022) 167

- Deuterium more stringent that ⁴He
 - \hookrightarrow different from all earlier investigations
 - \hookrightarrow also very asymmetric w.r.t. sign of the vev
- Quite a fine-tuning: $\delta v/v$ less than 0.5%
- Can be improved by better NN LQCD calculations closer to (or at) the physical point
- For variations on $\alpha_{\rm EM}$, see

UGM, Metsch, Meyer, Eur. Phys. J. A 59 (2023) 223 → more details in Helen Meyer's talk!

Summary & outlook

- Hadron-hadron interactions continue to be an important playground of Chiral Dynamics
 - ↔ strong focus on 3-pion/3-particle interactions Bijnens, Briceno, Döring, Hansen, Mai, Romero-Lopez, Rusetsky, Sharpe, ...
 - \hookrightarrow first LQCD calculation of the $\omega(782)$ [stressed in CD 2018] Yan, Garafolo, Mai, UGM, C. Liu, L. Liu, Urbach
 - \hookrightarrow still lots to be done, e.g. $R \to N\pi\pi$, also BSM searches in B-decays etc
 - $\hookrightarrow \pi N \to \pi N$ from LQCD made progress since CD2018, but still ...

Bulava, Hanlon, Morningstar, Feng, Liu, Alexandrou, Petschlies, ...

• Ever increasing role in the hadron spectrum

- \hookrightarrow two-pole structures (nice interplay of CD + LQCD + Exp.)
- \hookrightarrow standard tool to approach the physical point, but problems remain, ...
- \hookrightarrow OPE contribution to exotic states gains relevance (pentaquarks,...)
- Pions in nuclei: they are there, but hard to quantify [indirect measures]
- New avenues of chiral dynamics:
 - \hookrightarrow axion physics

Spalinski, di Luzio, Martinelli, Cortona, Hardy, Villadoro, Vega, Guo, UGM , Vonk,...

 \hookrightarrow

Final slide

Finally, can I answer the question:

"Chiral dynamics: Quo vadis?"

 \rightarrow Well, let us see at CD 2027 @ ... !