CHIRAL EFFECTIVE FIELD THEORY FOR NEUTRINOLESS DOUBLE BETA DECAY

Jordy de Vries University of Amsterdam & Nikhef

Work with: V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti, M. Hoferichter, U. van Kolck, V. Plakkot, S. Pastore, M. Piarulli,

The plan of attack

I. Introduction to Majorana neutrinos and 0vbb

- 2. Neutrinoless double beta decay from light Majorana neutrino exchange
 - Controlling nuclear matrix elements !
- 3. Flash: Other lepton-number-violating mechanisms in effective field theory

Neutrino masses

- In the original formulation of the Standard Model (Weinberg 1967) neutrinos were considered to be massless particles
- But neutrinos do have mass !

$$P(\nu_{\mu} \to \nu_{e}) \sim \sin \frac{\Delta m^{2} L}{2E}$$

• Biggest mass splitting: $|\Delta m| \simeq 0.05 \ eV$

• Direct limits:

 $m_{\nu_e} \leq 0.8 \, eV$

KATRIN experiment

Cosmology (DESI 2024)

Smallest:

$$\begin{split} |\delta m| &\simeq 0.008 \ eV \\ \sum m_{\nu_i} &\leq 0.15 \ eV(IH) \\ \sum m_{\nu_i} &\leq 0.11 \ eV(NH) \end{split}$$

EFTs and neutrino mass: an old story

• Easy fix: Insert gauge-singlet right-handed neutrino v_{R}

$$\mathcal{L} = -y_{\nu} \bar{L} \tilde{H} \nu_R \qquad \qquad y_{\nu} \sim 10^{-12} \rightarrow m_{\nu} \sim 0.1 \,\mathrm{eV}$$

• Nothing really wrong with this....

EFTs and neutrino mass: an old story

• Easy fix: Insert gauge-singlet right-handed neutrino v_{R}

$$\mathscr{L} = -y_{\nu} \bar{L} \tilde{H} \nu_R \qquad \qquad y_{\nu} \sim 10^{-12} \to m_{\nu} \sim 0.1 \,\mathrm{eV}$$

• Nothing really wrong with this.... But nothing forbids a Majorana Mass term

$$\mathscr{L} = -y_{\nu}\,\bar{L}\tilde{H}\nu_R - M_R\,\nu_R^T C\nu_R$$

'Everything that is not forbidden is compulsary'

EFTs and neutrino mass: an old story

• Easy fix: Insert gauge-singlet right-handed neutrino v_R

$$\mathscr{L} = -y_{\nu} \bar{L} \tilde{H} \nu_R \qquad \qquad y_{\nu} \sim 10^{-12} \to m_{\nu} \sim 0.1 \,\mathrm{eV}$$

• Nothing really wrong with this.... But nothing forbids a Majorana Mass term

$$\mathscr{L} = -y_{\nu} \, \bar{L} \tilde{H} \nu_R - M_R \, \nu_R^T C \nu_R$$

'Everything that is not forbidden is compulsary'

- If M_R is significantly larger than active neutrino masses (< eV) : see-saw mechanism
- In case of I left and I right-handed neutrino:

$$m_1 \simeq \left| \frac{y_\nu^2 v^2}{m_R} \right| \qquad m_2 \simeq m_R$$

• The mass eigenstates are Majorana states

$$\nu_i^c = \nu_i$$

EFT point of view

- Integrating out heavy states leads to local operator
- For light right-handed neutrinos see V. Plakkot's talk this afternoon

• Obtain the single dimension-5 SMEFT operator

Neutrino Majorana mass

• This term describes neutrino oscillations but implies Lepton-Number Violation

Weinberg '79

Probes of lepton number violation

• Most promising way: look at `neutrinoless' processes $K^- \rightarrow \pi^+ + e^- + e^- \qquad pp \rightarrow e^+ + e^+ + jets$ $X(Z,N) \rightarrow Y(Z+2,N-2) + e^- + e^-$

Probes of lepton number violation

• Most promising way: look at `neutrinoless' processes $K^- \rightarrow \pi^+ + e^- + e^- \qquad pp \rightarrow e^+ + e^+ + jets$ $X(Z,N) \rightarrow Y(Z+2,N-2) + e^- + e^-$

Probes of lepton number violation

Most promising way: look at `neutrinoless' processes

 $K^- \to \pi^+ + e^- + e^- \quad pp \to e^+ + e^+ + jets$ $X(Z, N) \to Y(Z + 2, N - 2) + e^- + e^-$

- Isotopes protected from single beta decay
- Neutrinofull double beta decay from Standard Model

 $X(Z,N) \rightarrow Y(Z+2,N-2) + 2e^- + 2\bar{\nu}_e$

$$T_{1/2}^{2\nu} \left({}^{76}Ge \rightarrow {}^{76}Se \right) = \left(1.84_{-0.10}^{+0.14} \right) \times 10^{21} yr$$

	Lifetime	Experiment	Year	
76Ge	$8.0 \cdot 10^{25} y$	GERDA	2018	
130Te	$3.2 \cdot 10^{25} y$	CUORE	2019	
136Xe	$3.8 \cdot 10^{26} y$	KamLAND-Zen	2024	

Note: age of universe ~ 10¹⁰ year

Interpreting 10²⁶ years....

$$1/\tau \sim |M_{0\nu}|^2 m_{\beta\beta}^2 \qquad m_{\beta\beta} = \sum_i U_{ei}^2 m_i$$

$$m_{\beta\beta} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{2i\lambda_1} + m_3 s_{13}^2 e^{2i(\lambda_2 - \delta_{13})} = \text{Effective neutrino mass}$$

Vary the lightest mass and the ordering Band from varying unknown phases

How close are experiments ?

Interpreting 10²⁶ years....

$$1/\tau \sim |M_{0\nu}|^2 m_{\beta\beta}^2 \qquad m_{\beta\beta} = \sum_i U_{ei}^2 m_i$$

$$m_{\beta\beta} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{2i\lambda_1} + m_3 s_{13}^2 e^{2i(\lambda_2 - \delta_{13})} = \text{Effective neutrino mass}$$

Quite close !!

Next-generation discovery possible if inverted hierarchy or m_{lightest} >0.01 eV

Towards improved theoretical predictions

• Assuming 'standard' mechanism: uncertainties from hadronic & nuclear theory

Towards improved theoretical predictions

• Assuming 'standard' mechanism: uncertainties from hadronic & nuclear theory

Can we (chiral dynamics participants) help?

The plan of attack

I. Introduction to Majorana neutrinos and 0vbb

2. Ovbb from light Majorana neutrino exchange

- Controlling nuclear matrix elements !
- 3. Flash: Other lepton-number-violating mechanisms in effective field theory

Anatomy of a decay

$$\Gamma^{0\nu} \sim m_{\beta\beta}^2 \cdot g_A^4 \cdot |M_{0\nu}|^2 \cdot G$$

- Neutrinos are still degrees of freedom in low-energy chiral EFT
- Basically just use low-energy chiral Lagrangian with weak interactions

 $P \qquad L_{\chi,Fermi} = G_F f_\pi \left(\partial_\mu \pi^- \overline{e}_L \gamma^\mu v_L \right) \qquad v_L \qquad v$

 ν_L

 ν_L

 ν_L

- Neutrinos are still degrees of freedom in low-energy chiral EFT
- Basically just use low-energy chiral Lagrangian with weak interactions

This is the leading-order 'neutrino potential'

• Leads to 'long-range' nn \rightarrow pp + ee

• Contributions from virtual hard neutrinos $\mathbf{q} \sim \Lambda_{\chi} \sim 1 \, \mathrm{GeV}$

Naive-dimensional analysis tells us this is NNLO

$$V_{\nu}^{short} \sim \frac{m_{\beta\beta}}{\Lambda_{\chi}^2}$$

• Leads to 'long-range' nn \rightarrow pp + ee

• More contributions at higher orders in chiral perturbation theory

• Loops at N²LO are divergent: come with counter terms $V_{\nu}^{N^{2}LO} \sim \left(V_{\text{finite}} + V_{UV}\log\frac{m_{\pi}^{2}}{\mu^{2}} + V_{\text{CT}}\right) \otimes \bar{e}_{L}e_{L}^{c}$ • Divergences absorbed by counter terms

Cirigliano, Dekens, Mereghetti, Walker-Loud '17

• At higher orders also 'closure corrections' and three-body effects e.g. Enge

e.g. Engel et al '18

Leading-order transition currents

$$V_{\nu} = (2G_F^2 m_{\beta\beta})\tau_1^+ \tau_2^+ \frac{1}{\mathbf{q}^2} \left[(1 + 2g_A^2) + \frac{g_A^2 m_\pi^4}{(\mathbf{q}^2 + m_\pi^2)} \right] \otimes \bar{e}_L e_L^c$$

- Leading-order 0vbb current is very simple
- No unknown hadronic input ! Only unknown is m_{etaeta}
- Many-body methods disagree significantly
- Original idea: study simpler nuclear systems
- Not relevant for experiments but as a theoretical laboratory

Engel-Menendez '16

Neutron-Neutron → **Proton-Proton**

Study simplest nuclear process: nn → pp + ee

• Derive wave functions from chiral effective field theory $T = V + VG_0 T$

• Contact term low-energy constant fitted to ¹S₀ scattering length

Leading-order transition currents

• Insert long-distance neutrino exchange into scattering states

Similar to pion-mass dependence of C₀ in Kaplan/Savage/Wise '98 Phillips/Valderrama PRL '14

Cirigliano, Dekens, JdV, Graesser, Mereghetti, Pastore, van Kolck PRL '18

Leading-order transition currents

• Insert long-distance neutrino exchange into scattering states

n

n

New divergences

Similar to pion-mass dependence of C₀ in Kaplan/Savage/Wise '98 Phillips/Valderrama PRL '14

Logarithmic regulator dependence

• Divergence indicates sensitivity to short-distance physics (hard-neutrino exchange)

• Suggest to add a counter term: a short-range nn \rightarrow pp + ee operator

Cirigliano, Dekens, JdV, Graesser, Mereghetti, Pastore, van Kolck PRL '18

But how big is it ?

'Long-range' neutrino-exchange

'Short-distance' neutrino exchange required by renormalization of amplitude

- Short-distance piece depends on unknown QCD matrix element ${f g}_{ u}$

- How to determine the value of this matrix element ? Obviously no data!
- Lattice QCD can do this in the future. But not yet....

Davoudi, Kadam PRL '21 Briceno et al '19 '20 NPLOCD '24

• But solved already for the 'toy-problem'

 $\pi^- + \pi^- \rightarrow e^- + e^-$

Tuo et al. '19; Detmold, Murphy '20 '22

A connection to electromagnetism

• A neutrino-exchange process looks like a photon-exchange process

Cirigliano et al '19

Walzl, Meißner, Epelbaum '01

- Chiral connection between double-weak and double-EM NN interactions
- Isospin-breaking nucleon-nucleon scattering data determines C_1+C_2
- Electromagnetism conserves parity coupling and g_v~C₁ only

A connection to electromagnetism

• A neutrino-exchange process looks like a photon-exchange process

Cirigliano et al '19

Walzl, Meißner, Epelbaum '01

- Chiral connection between double-weak and double-EM NN interactions
- Isospin-breaking nucleon-nucleon scattering data determines C1+C2
- Electromagnetism conserves **parity** coupling and **g_ν~C_I** only
- Large-Nc arguments indicates $C_1 + C_2 \gg C_1 C_2$ Richardson, Schindler, Pastore, Springer '21
- We originally assumed g_v~(C₁+C₂)/2, what happens to neutrinoless double beta decay ?

Impact on nuclear matrix elements

• Use VMC + Norfolk chiral potentials for wave functions • Extract $g_V \sim (C_1 + C_2)/2$ from same potential Nuclear matrix elements $1^{12}Be \rightarrow 1^{12}C + e^{-} + e^{-}$ 0.7 0.5 1^{15}

- Short-distance effects are sizable and change matrix elements by O(1)
- **Caveat-I** Based on $g_v \sim (C_1 + C_2)/2$ relation (not so clear)
- **Caveat-2** These are not nuclei of experimental interest
- Can we do better ?

An analytic approach

• The nn \rightarrow pp + ee amplitude can be represented as an integral expression

• Can represent the `red box' in regions of the virtual neutrino momentum k

Cirigliano, Dekens, JdV, Hoferichter, Mereghetti JHEP '22 PRL '21

An analytic approach

• The nn \rightarrow pp + ee amplitude can be represented as an integral expression

$$A_{\nu} \sim G_{F}^{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{g_{\mu\nu}}{k^{2}} \int d^{4}x e^{ik \cdot x} \langle pp | T\{J_{W}^{\mu}(x)J_{W}^{\nu}(0)\} | nn \rangle$$

- At small virtual momentum: NLO chiral EFT
- Intermediate momentum: (model-dependent) resonance contributions to nucleon form factors and to NN scattering
- Large momentum: Perturbative QCD + Operator Product Expansion

Small dependence on local 4-quark matrix elements

Determining the contact term

• Inelastic channels studied by Graham van Goffrier (UCL PhD thesis '24) and found to be small

The total amplitude

• The result is an expression for **total nn** →**pp** + **ee amplitude**

 $|A_{\nu}(|\mathbf{p}|, |\mathbf{p}'|)| = -0.019(1) \,\mathrm{MeV^{-2}}$

 $|\mathbf{p}| = 25 \,\text{MeV}$ $|\mathbf{p}'| = 30 \,\text{MeV}$

• Example: in dimensional regularization in MS-bar scheme

 $g_{\nu}^{NN}(\mu = m_{\pi}) = (1.3 \pm 0.1 \pm 0.2 \pm 0.5)$

- Matching to 'fake-data' possible for **any scheme** suitable for nuclear calculations
- Now used to include the contact term into ab initio 0vbb calculations
- Same strategy was used to 'predict' EM corrections to nucleon-nucleon scattering

$$a_{CIB} = \frac{a_{nn} + a_{pp} - 2a_{np}}{2} = (14 \pm 5) \,\text{fm} \qquad a_{CIB}^{\text{data}} = (10.4 \pm 0.2) \,\text{fm}$$

Cirigliano, Dekens, JdV, Hoferichter, Mereghetti JHEP '22 PRL '21

Impact on realistic nuclei

- Some results from last year (2307.15156 Belley et al) using VS-IMSRG
- See also: Belley et al PRL '24 for detailed 76Ge analysis

• Ab initio calculations find small long-distance NMEs compared to other methods

Partially compensated by new short-distance interaction (50-100% effect)

- Just using various ab initio methods leads to significantly smaller uncertainty bands
- Question: how to compare ab initio to phenomenological interactions including short-distance ?

Higher-order corrections

• It seems now that the leading-order 0vbb current contains 2 terms

• Are there more surprises ?

Higher-order corrections

• It seems now that the leading-order 0vbb current contains 2 terms

• At NNLO we get additional contributions from loops

Higher-order corrections in the nuclear shell model

- Soft loops (Cirigliano et al '17) and ultrasoft (Dekens et al '24) calculated in chiral EFT
- Implemented by Javier Menendez and collaborators (2408.03374) in Shell Model

Nucleus	NSM						
	L	LO		$N^{2}LO$			
	L	S	usoft	loops			
48 Ca	0.92(14)	0.43(20)	0.01(3)	0.05(7)			
$^{76}\mathrm{Ge}$	3.57(25)	0.97(48)	-0.26(0)	0.05(16)			
82 Se	3.38(20)	0.91(43)	-0.24(1)	0.05(15)			
$^{96}\mathrm{Zr}$							
$^{100}\mathrm{Mo}$							
^{116}Cd							
124 Sn	2.79(63)	1.06(52)	-0.21(5)	0.06(16)			
$^{130}\mathrm{Te}$	2.68(79)	1.07(50)	-0.20(7)	0.06(16)			
$^{136}\mathrm{Xe}$	2.26(53)	0.86(41)	-0.17(5)	0.05(13)			

- Confirms that these effects are relatively small (usoft -10% corrections roughly)
- Comforting that no other supposedly small corrections are found to be large !

Towards improved theoretical predictions

• Assuming 'standard' mechanism: uncertainties from hadronic & nuclear theory

Engel-Menendez '16

Can we (chiral dynamics participants) help?

Seems so but more work is needed ! We should update the 'I6 review plot !

The plan of attack

I. Introduction to Majorana neutrinos and 0vbb

- 2. Ovbb from light Majorana neutrino exchange
 - Controlling nuclear matrix elements !
- 3. Other Lepton-number-violating mechanisms in EFT

Beyond neutrino masses

- Neutrinoless double beta decay can be caused through other mechanisms !
- For instance in left-right symmetric models, supersymmetry, leptoquarks

- No light neutrinos appear at all in these processes but **same observable signature**
- If scale of LNV is high they can be captured by effective field theory techniques

$$\mathscr{L}_{LNV} = \frac{c_5}{\Lambda} \left(L^T C \tilde{H} \right) (\tilde{H}^T L) + \sum_i \frac{d_i}{\Lambda^3} O_{7i} + \sum_i \frac{f_i}{\Lambda^5} O_{9i} + \dots$$

• Disentangling the origin from 0vbb measurements will be a **hard (luxury)** problem

Example dim-9 operators

• Pionic operators lead to leading-order neutrinoless double beta decay contributions !

Depend on four-quark matrix elements: great improvements by CalLat

 $g_4^{\pi\pi} = -(1.9 \pm 0.2) \,\text{GeV}^2$ $g_5^{\pi\pi} = -(8.0 \pm 0.6) \,\text{GeV}^2$

Nicholson et al '18

New Ovbb topologies

- Straightforward to calculate generalized 0vbb transition current Cirigliano et al '17 '18
- Need additional nuclear matrix elements (NMEs)

• At leading-order in Chiral-EFT: 15 NMEs (all in literature)

Similar uncertainties as before

NMEs	76 Ge			Hy	Hyvarinen/Suhonen '15			
	[74]	[31]	[81]	[82, 83]	Ba	Menendez et al '17 '18 Barea et al '15 '18		
M_F	-1.74	-0.67	-0.59	-0.68	He	Horoi/Neacsu '17		
M_{GT}^{AA}	5.48	3.50	3.15	5.06				
M_{GT}^{AP}	-2.02	-0.25	-0.94	NMEs		⁷⁶ Ge		
M_{GT}^{PP}	0.66	0.33	0.30	$M_{F,sd}$	-3.46	-1.55	-1.46	-1.1
M_{GT}^{MM}	0.51	0.25	0.22	$M^{AA}_{GT,sd}$	11.1	4.03	4.87	3.62
M_T^{AA}	-	-	-	$M^{AP}_{GT, sd}$	-5.35	-2.37	-2.26	-1.37
M_T^{AP}	-0.35	0.01	-0.01	$M^{PP}_{GT, sd}$	1.99	0.85	0.82	0.42
M_T^{PP}	0.10	0.00	0.00	$M^{AP}_{T, sd}$	-0.85	0.01	-0.05	-0.97
M_T^{MM}	-0.04	0.00	0.00	$M_{T,sd}^{PP}$	0.32	0.00	0.02	0.38

The 0vbb metro map

• Open-access Phyton tool (NuDoBe) that automizes all of this in SM-EFT framework

download: <u>https://github.com/OScholer/nudobe</u> online tool: <u>https://oscholer-nudobe-streamlit-4foz22.streamlit.app/</u> Scholer, Graf, JdV' 23

Disentangling the source of LNV

- A single measurement can be from any LNV operator
- Can we learn more from several measurements ?
- Example: ratios of decay rates of various isotopes

Deppisch/Pas '07, Lisi et al '15, Graf/Scholer '22

Unfortunately, different isotopes not too discriminating

Ratios suffer from nuclear/hadronic uncertainties

Disentangling the source of LNV

- A single measurement can be from any LNV operator
- Can we learn more from several measurements ?
- One could in principle measure angular&energy electron distributions

 $v_L \longleftrightarrow v_L$

Concluding remarks

- Neutrinoless double beta decay best way to determine if neutrinos are Majorana states
- Heroic experimental effort ! Hadronic/Nuclear theory needed to interpret data
- Progress from EFT + lattice + nuclear structure
- New findings: standard mechanism depends on short-distance physics Impacts ab initio calculations of heavy nuclear decays

- End-to-End EFT framework for any LNV source (easy to use)
- Not discussed: extension to light sterile neutrinos

See talk by V. Plakkot this afternoon

