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Outline

how to obtain hadron resonance properties from lattice QCD
finite-volume energies ⇒ scattering phase shifts

our recent results for ∆, Λ(1405) resonances
other recent baryon-meson scattering studies in lattice QCD
baryon-baryon scattering

NN in SU(3) flavor limit: controversy status
ΛΛ and other systems (see Green talk)

focus on u, d, s baryons (apologies to charmed baryons)
no discussion of HAL QCD method (see Aoki talk)
outlook
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Recent strongly stable baryons at physical point
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Masses/widths of resonances from lattice QCD

evaluate finite-volume energies of stationary states
corresponding to decay products of resonance for variety of total
momenta
such energies obtained from Markov-chain Monte Carlo
estimates of appropriate temporal correlation functions
parametrize either the K-matrix or its inverse for the relevant
scattering processes
Lüscher quantization condition determines finite-volume
spectrum from the K matrix
determine best fit values of the parameters in the K-matrix by
matching the spectrum from quantization condition to spectrum
obtained from lattice QCD
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Temporal correlations from path integrals

stationary-state energies from N ×N Hermitian correlation
matrix

Cij(t) = 〈0|Oi(t+t0)Oj(t0) |0〉
judiciously designed operators Oj create states of interest

Oj(t) = Oj [ψ(t), ψ(t), U(t)]

correlators from path integrals over quark ψ,ψ and gluon U fields

Cij(t) =

∫
D(ψ,ψ, U) Oi(t+ t0) Oj(t0) exp

(
−S[ψ,ψ, U ]

)
∫
D(ψ,ψ, U) exp

(
−S[ψ,ψ, U ]

)

involves the action in imaginary time

S[ψ,ψ, U ] = ψ K[U ] ψ + SG[U ]

K[U ] is fermion Dirac matrix
SG[U ] is gluon action
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Integrating the quark fields

integrals over Grassmann-valued quark fields done exactly
meson-to-meson example:∫

D(ψ,ψ) ψaψb ψcψd exp
(
−ψKψ

)

=
(
K−1
ad K

−1
bc −K−1

ac K
−1
bd

)
detK.

baryon-to-baryon example:
∫
D(ψ,ψ) ψa1ψa2ψa3 ψb1ψb2ψb3 exp

(
−ψKψ

)

=

(
−K−1

a1b1
K−1
a2b2

K−1
a3b3

+K−1
a1b1

K−1
a2b3

K−1
a3b2

+K−1
a1b2

K−1
a2b1

K−1
a3b3

− K−1
a1b2

K−1
a2b3

K−1
a3b1
−K−1

a1b3
K−1
a2b1

K−1
a3b2

+K−1
a1b3

K−1
a2b2

K−1
a3b1

)
detK
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Monte Carlo integration

correlators have form

Cij(t) =

∫
DU detK[U ] K−1[U ] · · ·K−1[U ] exp (−SG[U ])∫

DU detK[U ] exp (−SG[U ])

resort to Monte Carlo method to integrate over gluon fields
use Markov chain to generate sequence of gauge-field
configurations

U1, U2, . . . , UN

most computationally demanding parts:
including detK in updating
evaluating K−1 in numerator
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Lattice QCD

Monte Carlo method using computers requires formulating
integral on space-time lattice (usually hypercubic)
quarks reside on sites, gluons reside on links between sites
integrate over gluon fields on each link

Metropolis method with global
updating proposal

RHMC: solve Hamilton equations
with Gaussian momenta

detK estimates with integral over
pseudo-fermion fields
systematic errors
− discretization
− finite volume
− unphysical quark masses
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Building blocks for single-hadron operators

building blocks: covariantly-displaced LapH-smeared quark fields
stout links Ũj(x)

Laplacian-Heaviside (LapH) smeared quark fields

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2
s + ∆̃

)

3d gauge-covariant Laplacian ∆̃ in terms of Ũ
displaced quark fields:

qAaαj = D(j)ψ̃(A)
aα , qAaαj = ψ̃

(A)

aα γ4D
(j)†

displacement D(j) is product of smeared links:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . . Ũjp(x+dp)δx′, x+dp+1

to good approximation, LapH smearing operator is

S = VsV
†
s

columns of matrix Vs are eigenvectors of ∆̃
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB

αβ (p, t) =
∑

x e
ip·(x+ 1

2 (dα+dβ))δab q
B
bβ(x, t) qAaα(x, t)

Φ
ABC

αβγ (p, t) =
∑

x e
ip·xεabc q

C
cγ(x, t) qBbβ(x, t) qAaα(x, t)

group-theory projections onto irreps of lattice symmetry group

M l(t) = c
(l)∗
αβ Φ

AB

αβ (t) Bl(t) = c
(l)∗
αβγ Φ

ABC

αβγ (t)

definite momentum p, irreps of little group of p
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Excited states from correlation matrices

energies from temporal correlations Cij(t) = 〈0|Oi(t)Oj(0)|0〉
in finite volume, energies are discrete (neglect wrap-around)

Cij(t) =
∑

n

Z
(n)
i Z

(n)∗
j e−Ent, Z

(n)
j = 〈0| Oj |n〉

not practical to do fits using above form
define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD)C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

2-exponential fits to C̃αα(t) yield energies Eα and overlaps Z(n)
j

energy shifts from non-interacting using 1-exp fits to ratio of
correlators (caution!)
given small shifts, fits must be done very carefully
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Correlator matrix toy model

Example: 12× 12 correlator matrix with Ne = 200 eigenstates

E0 = 0.20, En = En−1 +
0.08√
n
, Z

(n)
j =

(−1)j+n

1 + 0.05(j − n)2
.

left: effective energies of diagonal elements of correlator matrix
middle: effective energies of eigenvalues of C(t)

right: effective energies of eigenvalues of
C(τ0)−1/2 C(t) C(τ0)−1/2 for τ0 = 1
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Two-hadron operators

our approach: superposition of products of single-hadron
operators of definite momenta

cI3aI3bpaλa; pbλb
BIaI3aSapaΛaλaia

BIbI3bSbpbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib

group-theory projections onto little group of p and isospin irreps
crucial to know and fix all phases of single-hadron operators for
all momenta

each class, choose reference direction pref

each p, select one reference rotation Rp
ref that transforms pref into

p

efficient creating large numbers of two-hadron operators
generalizes to three, four, . . . hadron operators
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Local multi-hadron operators

comparison of π(k)π(−k) and localized
∑

x π(x)π(x) operators

much more contamination from higher states with local
multi-hadron operators
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Quark line diagrams

temporal correlations involving our two-hadron operators need
slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method! [CM et al., PRD83, 114505
(2011)]
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Quantum numbers in toroidal box

periodic boundary conditions in
cubic box

not all directions equivalent ⇒
using JPC is wrong!!

label stationary states of QCD in a periodic box using irreps of
cubic space group even in continuum limit

zero momentum states: little group Oh

A1a, A2ga, Ea, T1a, T2a, G1a, G2a, Ha, a = g, u
on-axis momenta: little group C4v

A1, A2, B1, B2, E, G1, G2

planar-diagonal momenta: little group C2v

A1, A2, B1, B2, G1, G2

cubic-diagonal momenta: little group C3v

A1, A2, E, F1, F2, G

include G parity in some meson sectors (superscript + or −)
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Spin content of cubic box irreps

numbers of occurrences of Λ irreps in J subduced

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2

J G1 G2 H J G1 G2 H
1
2 1 0 0 9

2 1 0 2
3
2 0 0 1 11

2 1 1 2
5
2 0 1 1 13

2 1 2 2
7
2 1 1 1 15

2 1 1 3
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Common hadrons

irreps of commonly-known hadrons at rest

Hadron Irrep Hadron Irrep Hadron Irrep

π A−1u K A1u η, η′ A+
1u

ρ T+
1u ω, φ T−1u K∗ T1u

a0 A+
1g f0 A+

1g h1 T−1g

b1 T+
1g K1 T1g π1 T−1u

N,Σ G1g Λ,Ξ G1g ∆,Ω Hg
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Scattering phase shifts from finite-volume energies

each finite-volume energy E related to S matrix (and phase
shifts) by the quantization condition

det[1 + F (P )(S − 1)] = 0

F matrix in JLSa basis states given by

〈J ′mJ′L′S′a′|F (P )|JmJLSa〉 = δa′aδS′S
1

2

{
δJ′JδmJ′mJ δL′L

+〈J ′mJ′ |L′mL′SmS〉〈LmLSmS |JmJ〉W (Pa)
L′mL′ ; LmL

}

total ang mom J, J ′, orbital L,L′, spin S, S′, channels a, a′

W given by

−iW (Pa)
L′mL′ ; LmL

=

L′+L∑

l=|L′−L|

l∑

m=−l

Zlm(sa, γ, u
2
a)

π3/2γul+1
a

√
(2L′ + 1)(2l + 1)

(2L+ 1)

×〈L′0, l0|L0〉〈L′mL′ , lm|LmL〉.

compute Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta
functions Zlm
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Kinematics

work in spatial L3 volume with periodic b.c.
total momentum P = (2π/L)d, where d vector of integers
calculate lab-frame energy E of two-particle interacting state in
lattice QCD
boost to center-of-mass frame by defining:

Ecm =
√
E2 − P 2, γ =

E

Ecm
,

assume Nd channels
particle masses m1a,m2a and spins s1a, s2a of particle 1 and 2
for each channel, can calculate

q2
cm,a =

1

4
E2

cm −
1

2
(m2

1a +m2
2a) +

(m2
1a −m2

2a)2

4E2
cm

,

u2
a =

L2q2
cm,a

(2π)2
, sa =

(
1 +

(m2
1a −m2

2a)

E2
cm

)
d
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K matrix

quantization condition relates single energy E to entire S-matrix
cannot solve for S-matrix (except single channel, single wave)
approximate S-matrix with functions depending on handful of fit
parameters
obtain estimates of fit parameters using many energies
easier to parametrize Hermitian matrix than unitary matrix
introduce K-matrix (Wigner 1946)

S = (1 + iK)(1− iK)−1 = (1− iK)−1(1 + iK)

Hermiticity of K-matrix ensures unitarity of S-matrix
with time reversal invariance, K-matrix must be real and
symmetric
multichannel effective range expansion (Ross 1961)

K−1
L′S′a′; LSa(E) = q

−L′− 1
2

a′ K̃−1
L′S′a′; LSa(Ecm) q

−L− 1
2

a ,
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Quantization condition

quantization condition can be written

det(1−B(P )K̃) = det(1− K̃B(P )) = 0

we define the box matrix by

〈J ′mJ′L′S′a′| B(P ) |JmJLSa〉 = −iδa′aδS′S u
L′+L+1
a W

(Pa)
L′mL′ ; LmL

×〈J ′mJ′ |L′mL′ , SmS〉〈LmL, SmS |JmJ〉
box matrix is Hermitian for u2

a real
quantization condition can also be expressed as

det(K̃−1 −B(P )) = 0

these determinants are real
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Block diagonalization

quantization condition involves determinant of infinite matrix
make practical by (a) transforming to a block-diagonal basis and
(b) truncating in orbital angular momentum
block-diagonal basis

|ΛλnJLSa〉 =
∑

mJ

cJ(−1)L; Λλn
mJ |JmJLSa〉

little group irrep Λ, irrep row λ, occurrence index n
transformation coefficients depend on J and (−1)L, not on S, a
replaces mJ by (Λ, λ, n)

group theoretical projections with Gram-Schmidt used to obtain
coefficients
use notation and irrep matrices from PRD 88, 014511 (2013)
box matrix elements computed using C++ software available on
github: TwoHadronsInBox
reference: NPB924, 477 (2017)
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Our recent ∆ resonance study

recent ∆-resonance study in Nucl. Phys. B987, 116105 (2023)
this work done in collaboration with

John Bulava (DESY, Zeuthen, Germany)
Andrew Hanlon (Kent State U.)
Ben Hörz (Intel Germany)
Daniel Mohler (GSI Helmholtz Centre, Darmstadt, Germany)
Bárbara Mora (GSI Helmholtz Centre, Darmstadt, Germany)
Joseph Moscoso (U. North Carolina)
Amy Nicholson (U. North Carolina)
Fernando Romero-López (Bern U.)
Sarah Skinner (Carnegie Mellon University)
Pavlos Vranas (Lawrence Livermore Lab)
André Walker-Loud (Lawrence Berkeley Lab)

CLS D200 ensemble 643 × 128 lattice, a ∼ 0.066 fm

number of configs = 2000
quark masses: mπ ∼ 200 MeV, mK ∼ 480 MeV

smearing: Nev = 448
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I = 3/2 Nπ spectrum determination

G1u(0) Hg(0) G1(1) G2(1) G(2) F1(3) F2(3) G(3) G1(4) G2(4)G1g(0) Hu(0)

6.0

6.5

7.0

7.5

E
cm
/m

π

Nπ

Nππ

irreps with leading (2J, L) = (3, 1) wave: Hg(0), G2(1), F1(3),
G2(4).
irrep with leading (1, 0) wave: G1u(0).
irrep with leading (1, 1) wave: G1g(0) not included because
ground state is inelastic.
irreps with s- and p-wave mixing: G1(1), G(2), G1(4).
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I = 1/2 spectrum determination

G1u(0) G1(1) G(2) G(3) G1(4)

5.0

5.5

6.0

6.5

E
cm
/m

π

Nπ

Nππ

isodoublet Nπ spectrum
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Parametrization of K-matrix

each partial wave parametrized using effective range expansion
remember

√
s = Ecm =

√
m2
π + q2

cm +
√
m2
N + q2

cm

for I = 3/2, JP = 3/2+ wave

q3
cm

m3
π

cot δ3/2+ =
6π
√
s

m3
πg

2
∆,BW

(m2
∆ − s),

other waves, used

q2`+1
cm

m2`+1
π

cot δIJP =

√
s

mπAIJP
,

fit parameter AIJP related to scattering length by

m2`+1
π aIJP =

mπ

mπ +mN
AIJP .
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Isoquartet scattering amplitudes
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I = 3/2 s- and p-wave scattering amplitudes
mass and width parameter of ∆-resonance

m∆

mπ
= 6.257(35), g∆,BW = 14.41(53),
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I = 1/2 scattering amplitudes

0
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scattering lengths

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22),
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∆ resonance

0
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δ 3
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∆ resonance at physical point

∆ resonance studied at physical pion mass, a = 0.08 fm:
Alexandrou et al. PRD 109, 034509 (2024)
finite-volume spectrum shown
physical point problem: low 3-particle threshold
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√
s[
G
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]
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J

GEVP

PGEVM

AMIAS

Ratio

Nπ threshold
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Measured Energies
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√
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∆ resonance at physical point

phase shift for ∆ resonance

0.44 0.46 0.48 0.50 0.52

Ecms [a]

δ 3
/
2
[r
a
d
]

0

π/2

sp− wave
Hg

G1

G2

(2)G
(3)G
F1

F2

MR = 1269 (39)Stat.(45)Total MeV

ΓR = 144 (169)Stat.(181)Total MeV
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Comparison to previous works
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Another ∆ resonance

∆ resonance study: Srijit Paul et al. Lattice 2024
lattice spacing a = 0.116 fm

quark masses mπ = 137, 199, 199, 247, 249 MeV

box sizes mπL = 4.0, 4.7, 3.6, 3.6, 4.7
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Another ∆ resonance

∆ resonance study: Srijit Paul et al. Lattice 2024
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Comparison to previous works

our results NPB987, 116105 (2023) not shown!
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Our Λ(1405) resonance study

PRL 132, 051901 (2024) and PRD109, 014511 (2024)
CLS D200 ensemble with mπ ≈ 200 MeV
Finite volume spectrum of Σπ and NK states below

G1u(0)G1g(0) G1(1) G2(1) G(2) F1(3) F2(3) G(3)

6.5

7.0

7.5

8.0

E
cm
/m

π

Σπ

Λππ

NK
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Study of Λ(1405) resonance

PDG lists Λ(1405) as single I = 0, JP = 1
2

− resonance
strangeness −1
Recent models based on chiral effective theory and unitary
suggest two nearby overlapping poles
Our study supports two-pole structure
Virtual bound state below Σπ threshold, resonance pole below
NK threshold
First lattice QCD study of this coupled-channel system using full
operator set

0.0

0.5

1.0

k̂
ik̂
j
|t i
j
|2

πΣ→ πΣ

K̄N → K̄N

πΣ→ K̄N

−0.1

0.0

Im
E

cm

m
π

0.0 0.2 0.4 0.6 0.8

Re (Ecm −mπ −mΣ)/mπ
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K matrix parametrization

For best parametrization, used `max = 0 in ERE
Ecm

Mπ
K̃ij = Aij +Bij∆πΣ

where Aij and Bij are symmetric and real coefficients with i and
j denoting either of the two scattering channels, and

∆πΣ = (E2
cm − (Mπ +MΣ)2)/(Mπ +MΣ)2

pole locations

E1 = 1395(9)stat(2)model(16)aMeV,

E2 = 1456(14)stat(2)model(16)a

−i× 11.7(4.3)stat(4)model(0.1)aMeV.

several other parametrizations also used:
an ERE for K̃−1

removing factor of Ecm above
Blatt-Biedenharn form

forms with one pole strongly disfavored
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Λ scattering amplitude poles

(left) scattering phase shifts and inelasticities
(right) transition amplitude showing poles

0

100

200

δ

δπΣ

δK̄N

0.0 0.2 0.4 0.6 0.8

(Ecm −mπ −mΣ)/mπ

0.6
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NN scattering at SU(3) flavor symmetric point

starting point to explore NN scattering in lattice QCD: SU(3)
flavor symmetric
inauspicious beginning! discrepany between different groups
HALQCD and our group (in PRC 103, 014003 (2021)) find no
bound states in either I = 0 or I = 1 NN systems
NPLQCD finds shallow bound states ( PRD 87, 034506 (2013))
CalLat also found bound state (PLB 765, 285 (2017))
possible sources of discrepancy:

first NPLQCD study and CalLat used only an off-diagonal
correlator→ plateaux misidentification from negative weights
need for local hexaquark operator(s)
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Summary of Discrepancy

Comparison of NPLQCD
deuteron cot δ with our PRC
Different actions: NPLQCD
stout-smeared
tadpole-improved action, this
work uses CLS clover Wilson
action
Different lattice spacing:
NPLQCD 0.145 fm, this work
0.086 fm
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q2/m2
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−0.25
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qc
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m
π

mπ ∼ 800: single stout

mπ ∼ 714: CLS
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Crux of the Matter?

Most likely key source of discrepancy is different energy
extractions
Effective energies from off-diagonal correlator with hexaquark
source, NN at-rest sink from Fig. 2 arXiv:1705.09239 [hep-lat]
(NPLQCD) for 483 lattice shown below
Red boxes: NPLQCD energy extractions from Fig. 4 of PRD87,
034506 (2013)
Green boxes: energies equivalent to our extractions
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Off-Diagonal Correlator vs Correlator Matrix

Spectral representation of correlators

Cij(t) =

∞∑

n=0

Z
(n)
i Z

(n)∗
j e−Ent

For diagonal i = j, amplitudes of exponentials all positive

Cii(t) =

∞∑

n=0

|Z(n)
i |2e−Ent

Off-diagonal can have negative weights
Excited-state contamination in simple off-diagonal correlator
decays slowly as e−(E1−E0)t

Contamination in rotated diagonal correlator decays much more
quickly as e−(EN−E0)t for N ×N correlator matrix
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Plateau Misidentification

Given negative weights and slow decay of excited-state
contamination in off-diagonal correlator, likelihood of plateau
misidentification is uncomfortably high
For 483 lattice and rest energy ∼ 2.4, total zero-momentum gap
∼ 0.015

For illustrative purposes, use five-exponential form

C(t) = e−E0t
(

1 +A1e
−∆1t +A2e

−∆2t +A3e
−∆3t +A4e

−∆4t
)

Take lowest 2 gaps of expected size, other 2 gaps to handle
observed short-time behavior

∆1 = 0.025, ∆2 = ∆1 +0.025, ∆3 = ∆2 +0.5, ∆4 = ∆3 +1.0

Use our equivalent E0 values, then solve for A1, A2, A3, A4 using
correlations at times t = 2, 3, 7, 11
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Plateau Misidentification

For deuteron (I = 0,3 S1), find

A1 = −1.0483, A2 = 0.4133, A3 = 0.6495, A4 = −1.7750.

Presence of negative weights can easily lead to false plateau
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Plateau Misidentification

For dineutron (I = 1,1 S0), find

A1 = −1.0986, A2 = 0.4993, A3 = 0.7127, A4 = −1.9065

Presence of negative weights can easily lead to false plateau
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Recent NPLQCD Isotriplet A1g Spectrum

Figure 9 of Phys.Rev.D107, 094508 (2023) shown below
Energy gaps above 2mN shown in lattice units
None of their diagonal correlators find the low energy needed for
the bound state!
Behavior of one level (hexaquark dominated) very peculiar
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Role of Hexaquark Operator in NN Spectrum

Results from our hexaquark study on the C103 ensemble
Blue points: energies obtained using all operators
Green points: energies obtained excluding hexaquark operators
Blue squares: hexaquark-dominated levels
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Conclusions about Hexaquark Operator

No additional low-lying state is found by including hexaquark
operator
Features of state created by hexaquark operator:

very small overlap with lowest-lying eigenstate
overlaps which initially increase with eigenstate number
largest overlap with eigenstates high above those studied here

Hexaquark operator introduces more noise
Conclusion: hexaquark operator not needed!
We do not observe the NPLQCD mystery state: explanation in
private communication at Lattice 2024
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Our latest NN results

Latest results for NN isosinglet (deuteron) scattering phase shift
on the C103 ensemble
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Our latest NN results with HAL QCD

latest results for NN isosinglet (deuteron) scattering phase shift
on the C103 ensemble
comparison to result from HAL QCD method (preliminary)
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H-dibaryon at SU(3)F symmetric point

H-dibaryon binding energy at SU(3)F symmetric point
mπ = mK ≈ 420 MeV

sensitivity to lattice discretization
see Green plenary later this week
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Green et al: PRL 127, 242003 (2021)
B

SU(3)F
H = 4.56±1.13stat±0.63syst MeV

Green: Lattice 2024
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H-dibaryon at SU(3)F spectra symmetric point

H-dibaryon binding energy at SU(3)F symmetric point
mπ = mK ≈ 420 MeV

finite-volume spectra (Green Lattice 2024)
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Roper resonance

Important resonance: Roper, first excitation of proton
experiment: 4-star, N(1440) with I(JP ) = 1

2 ( 1
2

+
)

experiment: width 250− 450 MeV

lattice QCD: three-quark operators have difficulty capturing
χQCD: studied using only variety of 3-quark operators
sequential empirical Bayesian (SEB) method, DWF sea with
overlap valence
large 3q basis with different smearings needed
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Roper resonance outlook

definitive study of Roper needs multi-hadron operators
Nπ, Nσ, ∆π operators
Nππ operators
large volume
three-particle amplitude analysis
several groups working on this
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Summary

methods such as stochastic LapH, distillation
allow reliable determinations of energies involving multi-hadron
states

large numbers of excited-state energy levels can be estimated
scattering phase shifts can be computed
hadron resonance properties: masses, decay widths
presented recent results for ∆, Λ(1405) resonances
NN discrepany resolved?
Roper resonance (need for three-particle states)
3-particle formalism developing
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