Gauge Theory Bootstrap:

Pion amplitudes and low energy parameters

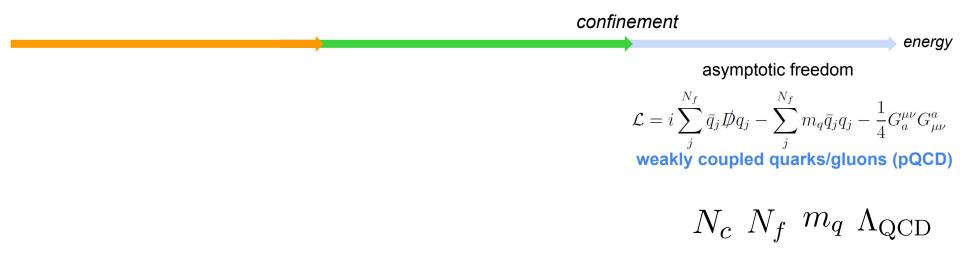
Yifei He

Ecole Normale Supérieure, Paris

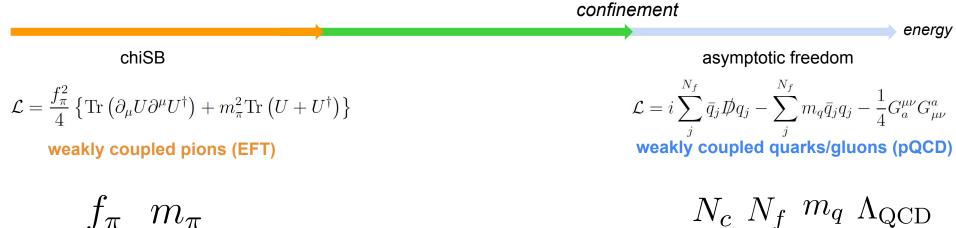
Chiral Dynamics 2024 @ Ruhr University Bochum

based on <u>2309.12402</u> and <u>2403.10772</u> with Martin Kruczenski

Strongly coupled gauge theory



Strongly coupled gauge theory



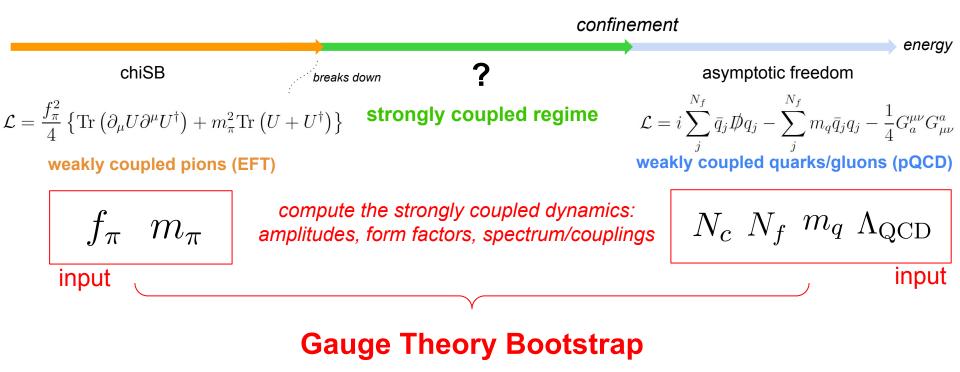
 $f_{\pi} m_{\pi}$

Strongly coupled gauge theory

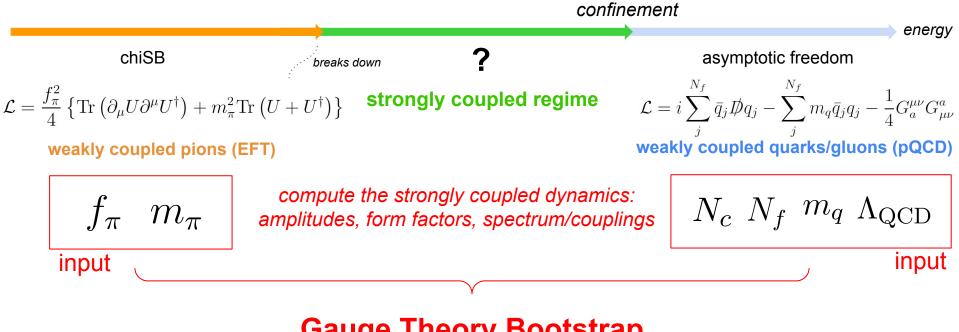
$$f_{\pi} m_{\pi}$$

 $N_c N_f m_q \Lambda_{\rm QCD}$

Strongly coupled gauge theory \rightarrow Gauge Theory Bootstrap



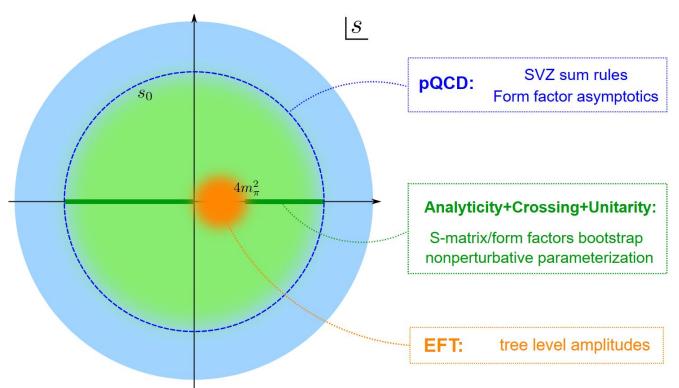
Strongly coupled gauge theory \rightarrow Gauge Theory Bootstrap



Gauge Theory Bootstrap

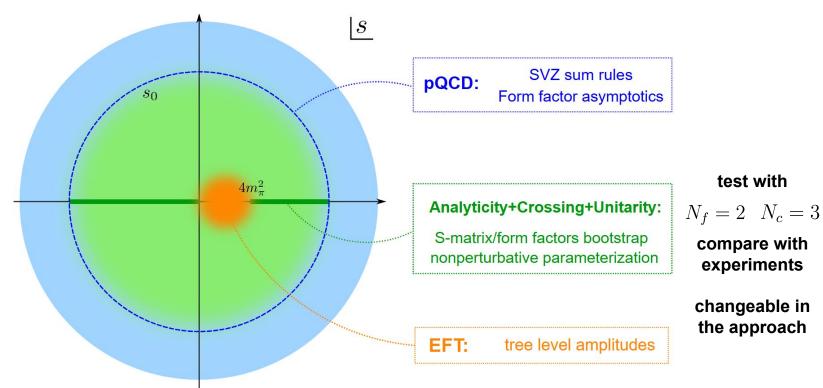
theoretical/numerical computation, not using experimental scattering data as input

Gauge Theory Bootstrap: summary

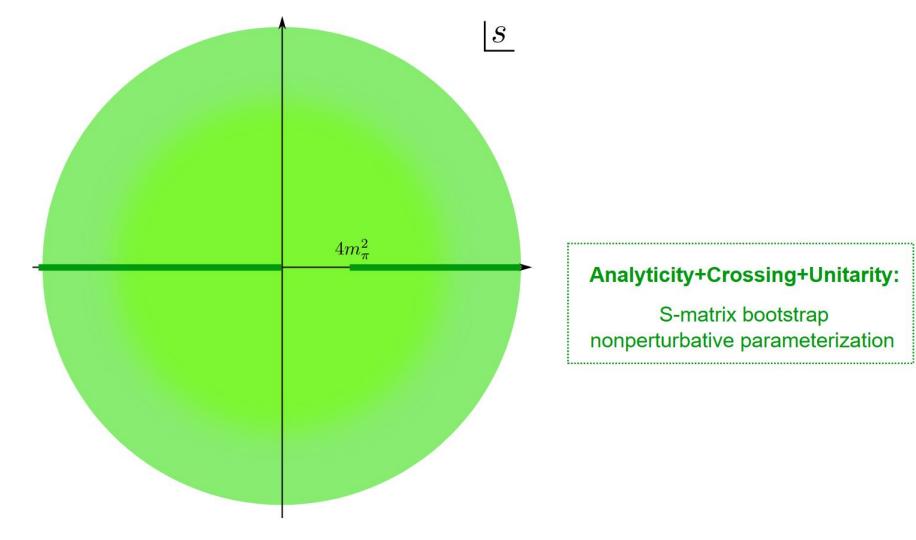


look for amplitudes/form factors that: 1, satisfy generic consistency conditions (analyticity, crossing, unitarity) 2, match low energy behavior (chiSB) and high energy (pQCD)

Gauge Theory Bootstrap: summary



look for amplitudes/form factors that: 1, satisfy generic consistency conditions (analyticity, crossing, unitarity) 2, match low energy behavior (chiSB) and high energy (pQCD)

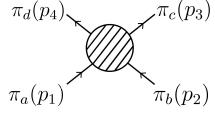


Analyticity+Crossing+Unitarity:

S-matrix bootstrap nonperturbative parameterization

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016&2017] $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$)

Crossing
$$A(s,t,u) = A(s,u,t)$$
 Analyticity cuts $s,t,u > 4$
 $m_{\pi} = 1$
 $s+t+u = 4$



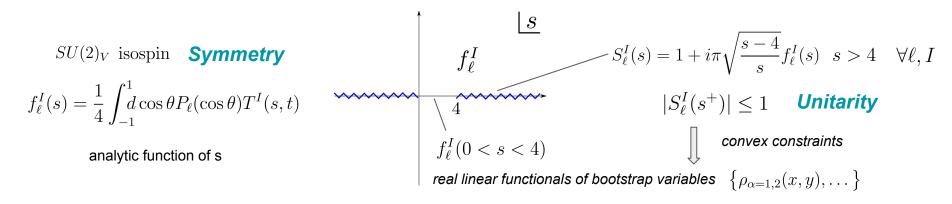
 $\pi_{c}(p_{3}) \qquad \text{modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016&2017]} \\ \langle p_{1}, a; p_{2}, b | \mathbf{T} | p_{3}, c; p_{4}, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc} \\ \tilde{\pi}_{b}(p_{2}) \qquad \tilde{\pi}_{b}(p_{2}) \qquad \text{Crossing} \qquad A(s, t, u) = A(s, u, t) \qquad \text{Analyticity} \qquad \text{cuts} \quad s, t, u > 4 \\ m_{\pi} = 1 \\ s + t + u = 4 \end{cases}$

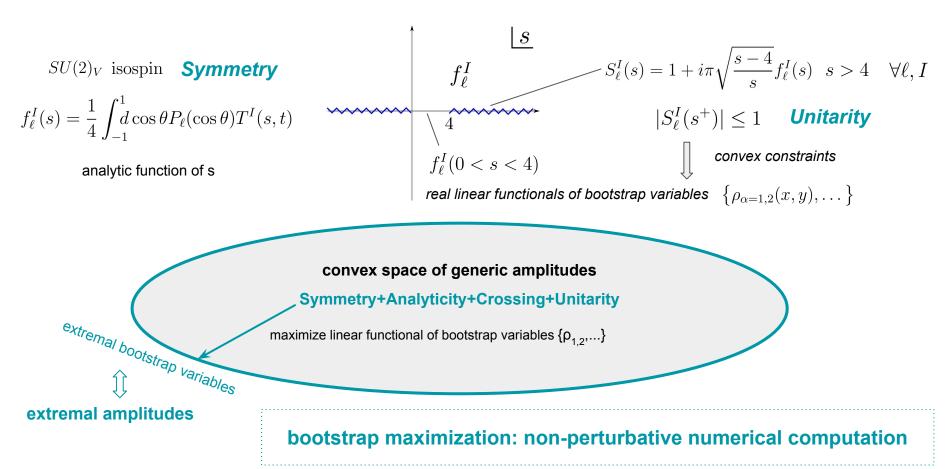
nonperturbative parameterization encoding Analyticity and Crossing:

 $\pi_d(p_4)$

$$A(s,t,u) = \frac{1}{\pi^2} \int_4^\infty \int_4^\infty dx \int_4^\infty \left[\frac{\rho_1(x,y)}{(x-s)(y-t)} + \frac{\rho_1(x,y)}{(x-s)(y-u)} + \frac{\rho_2(x,y)}{(x-t)(y-u)} \right] + \text{subtraction terms}$$

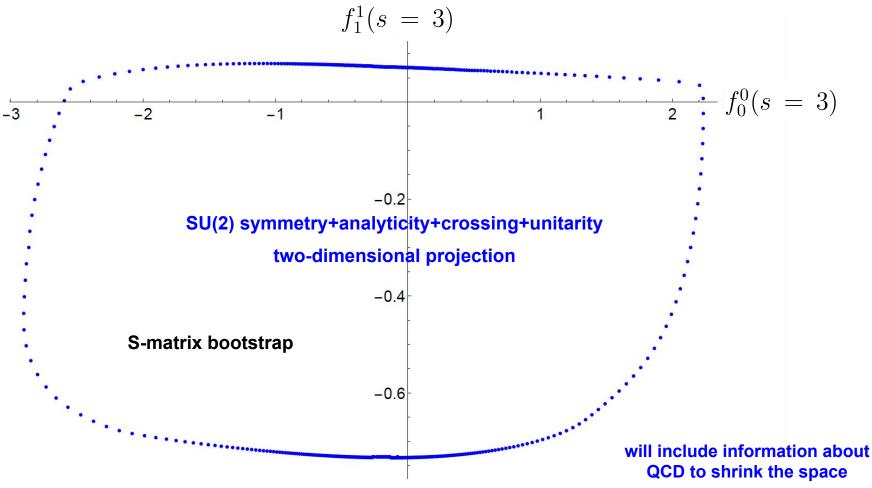
parameters: $\{
ho_{lpha=1,2}(x,y),\dots\}$ numerics: discretize $\{
ho_{lpha,ij},\dots\}$ bootstrap variables



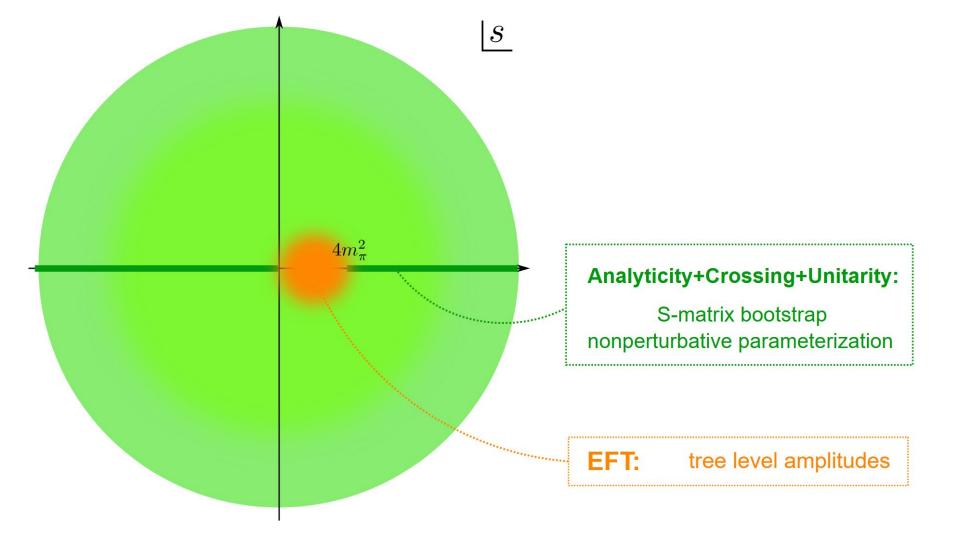


$$f_{1}^{1}(s = 3)$$

$$f_{0}^{0}(s = 3)$$
plot a two-dimensional projection
of the space of amplitudes under
SU(2) symmetry, analyticity, crossing, unitarity



each boundary point: an extremal numerical amplitude



Low energy matching with EFT

Interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude:
$$A_{
m tree}(s,t,u)=rac{4}{\pi}rac{s-m_\pi^2}{32\pi f_\pi^2}$$
 [Weinberg, 1966]

S0:
$$f_{0,\text{tree}}^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}$$
 P1: $f_{1,\text{tree}}^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}$ **S2:** $f_{0,\text{tree}}^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2}$

|S|

 f^I_{ℓ}

 χSB

good in the unphysical region (very low energy) $0 < s < 4m_{\pi}^2$

Low energy matching with EFT

nteraction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude:
$$A_{
m tree}(s,t,u)=rac{4}{\pi}rac{s-m_\pi^2}{32\pi f_\pi^2}$$
 [Weinberg, 1966]

S0:
$$f_{0,\text{tree}}^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}$$
 P1: $f_{1,\text{tree}}^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}$ **S2:** $f_{0,\text{tree}}^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2}$

|S|

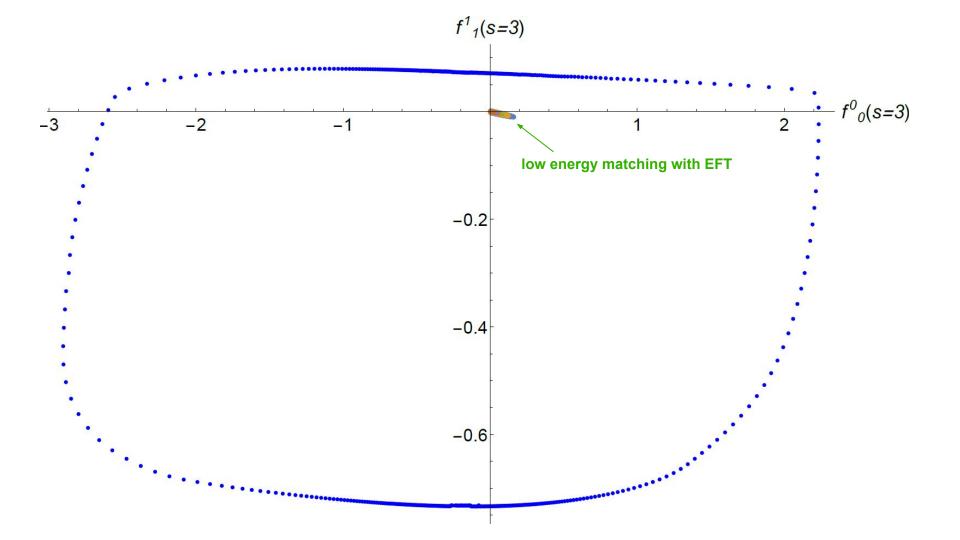
 f^I_ℓ

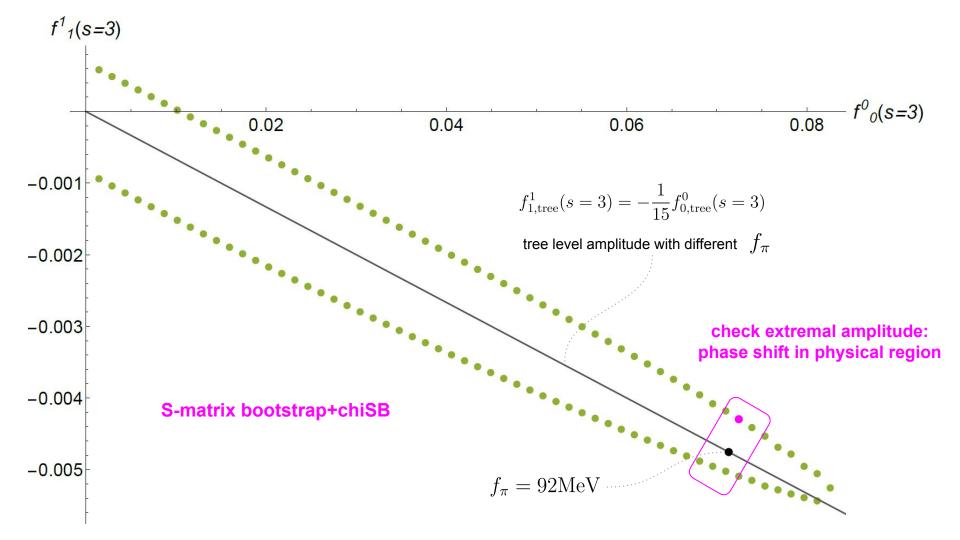
 χSB -

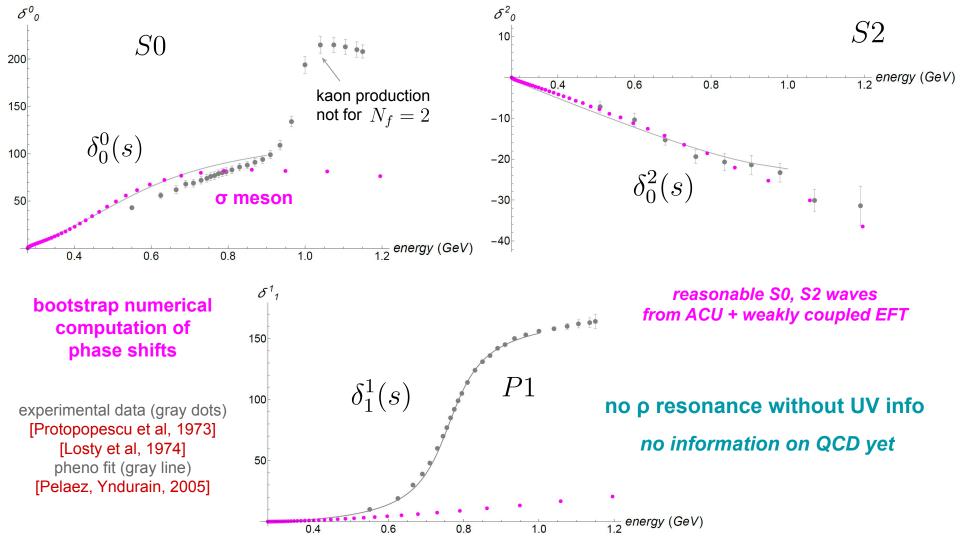
good in the unphysical region (very low energy) $0 < s < 4m_{\pi}^2$

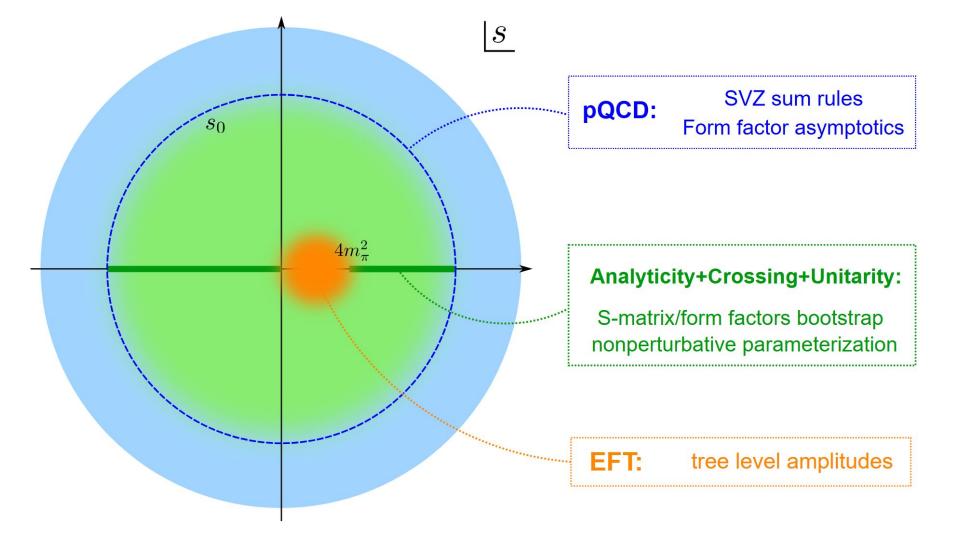
numerically: requires pw in bootstrap match tree level pw in the very low energy unphysical region

$$f_0^0(s) \simeq f_{0,\text{tree}}^0(s) \qquad f_1^1(s) \simeq f_{1,\text{tree}}^1(s) \qquad f_0^2(s) \simeq f_{0,\text{tree}}^2(s) \qquad 0 < s < 4m_\pi^2$$









S-matrix/form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

$$\begin{split} |\psi_1\rangle &= |p_1, p_2\rangle_{in} \,, \qquad |\psi_2\rangle = |p_1, p_2\rangle_{out} \,, \qquad |\psi_3\rangle = \int dx e^{-i(p_1 + p_2) \cdot x} \mathcal{O}(x) |0 \\ \end{split}$$
positive semidefinite matrix
$$\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$$

S-matrix/form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

$$\begin{split} |\psi_1\rangle &= |p_1, p_2\rangle_{in}, \qquad |\psi_2\rangle = |p_1, p_2\rangle_{out}, \qquad |\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x) |0\rangle \\ \text{positive semidefinite matrix} \quad \left\langle \psi_a \middle| \psi_b \right\rangle &= \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0 \\ \text{2-particle form factor:} \quad _{\text{out}} \langle p_1, p_2 \middle| \mathcal{O}(0) \middle| 0 \rangle = F(s) \qquad \text{spectral density:} \quad \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 \middle| \mathcal{O}^{\dagger}(x) \mathcal{O}(0) \middle| 0 \rangle = \rho(s) \\ \text{analytic function of s} \qquad \qquad \text{supported at } s > 4 \\ \hline F(s) \qquad \qquad F(s) = \frac{1}{\pi} \int_4^{\infty} dx \frac{\text{Im}F(x)}{x - s} \text{ +subtractions} \\ \text{extended bootstrap variables:} \quad \left\{ \rho_{1,2}(x, y), \dots, \text{Im}F(x), \rho(x) \right\} \end{split}$$

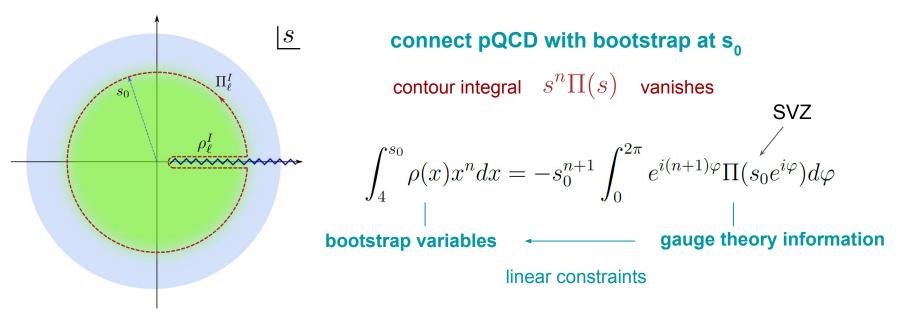
Gauge theory current correlators

$$\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \begin{pmatrix} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{pmatrix} \succeq 0 \quad s > 4 \quad \forall \ell, I \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{pmatrix} \succeq 0 \quad s > 4 \quad \forall \ell, I \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) & \Pi(s) \\ \mathcal{C}(s) = 2 \operatorname{Im}\Pi_{\ell}^{I}(x + i\epsilon) &$$

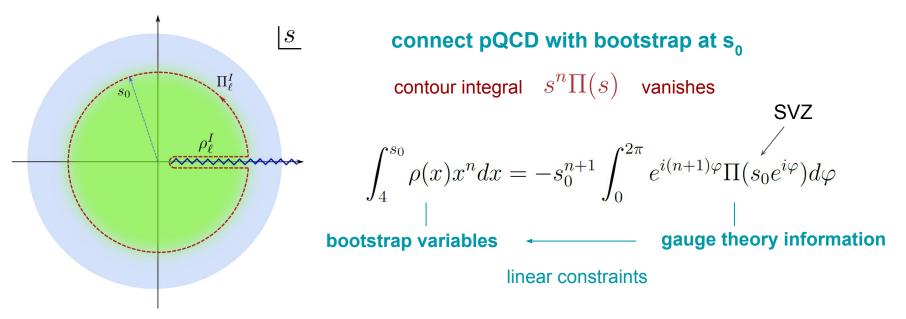
Gauge theory current correlators & SVZ expansion

$$\begin{array}{c|c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle & & & |s| \\ \langle \mathrm{out}|_{P',I,\ell} & \left(\begin{array}{ccc} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I*} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \quad s > 4 \quad \forall \ell, I & & \\ \mathrm{Gl}(\mathcal{O}_{P',I,\ell}^{I}) & \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I*} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \quad s > 4 \quad \forall \ell, I & & \\ \mathrm{Gl}(\mathcal{O}_{P',I,\ell}^{I*}) & \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I*} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \quad s > 4 \quad \forall \ell, I & & \\ \mathrm{Gl}(\mathcal{O}_{P',I,\ell}^{I*}) & \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I*} & \rho_{\ell}^{I}(s) \end{array}\right) \\ \text{construct operators from gauge theory with desired quantum numbers} \\ \text{e.g. vector (electromagnetic) current} & \Pi_{1}^{1}(s) = i \int \frac{d^{4}x}{(2\pi)^{4}} e^{iPx} \langle 0|\hat{T}\left\{j_{\sigma}^{\dagger}(x)j_{\sigma}(0)\right\}|0\rangle & & \\ P1 : j_{V}^{\mu}(x) = \frac{1}{2}(\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) & & \\ \text{large spacelike momenta} & - asymptotic free region with pQCD computation \\ \Pi_{1}^{I}(s) = \frac{1}{2}\frac{1}{(2\pi)^{4}}\left\{-\frac{1}{4\pi^{2}}\left(1+\frac{\alpha_{s}}{\pi}\right)s\ln(-\frac{s}{\mu^{2}})+\ldots\right\} \\ \text{pQCD computation} \end{array}$$

Finite energy sum rule



Finite energy sum rule

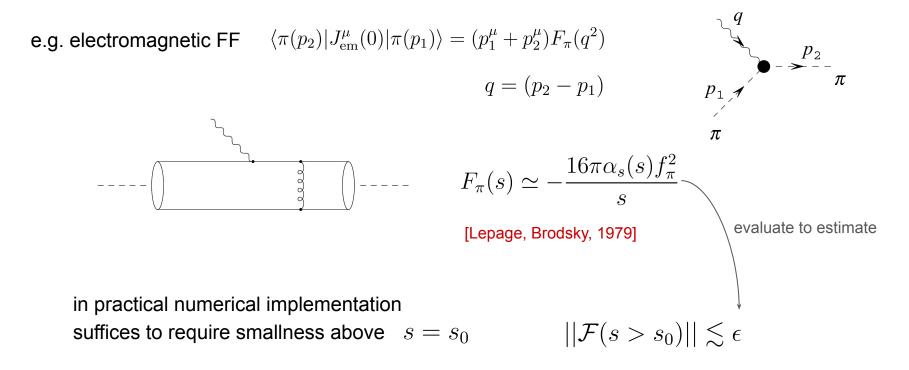


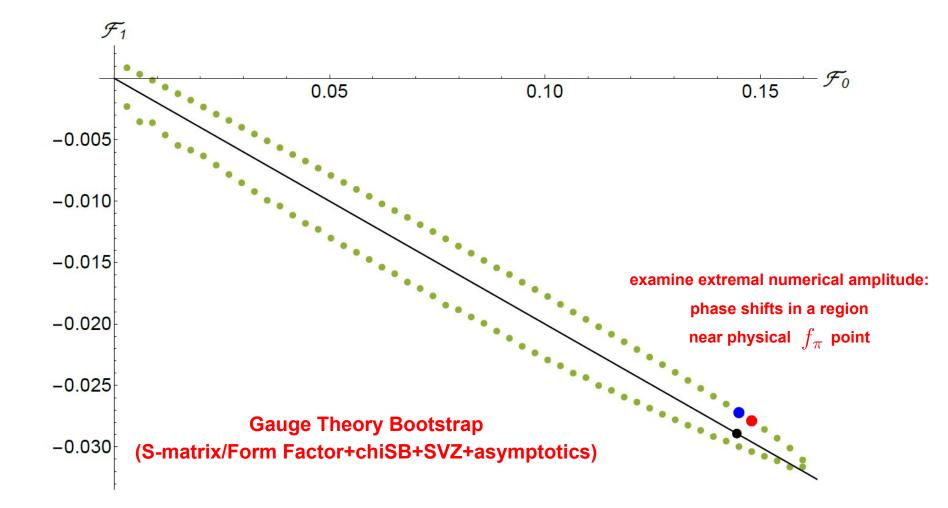
e.g. vector (electromagnetic) current

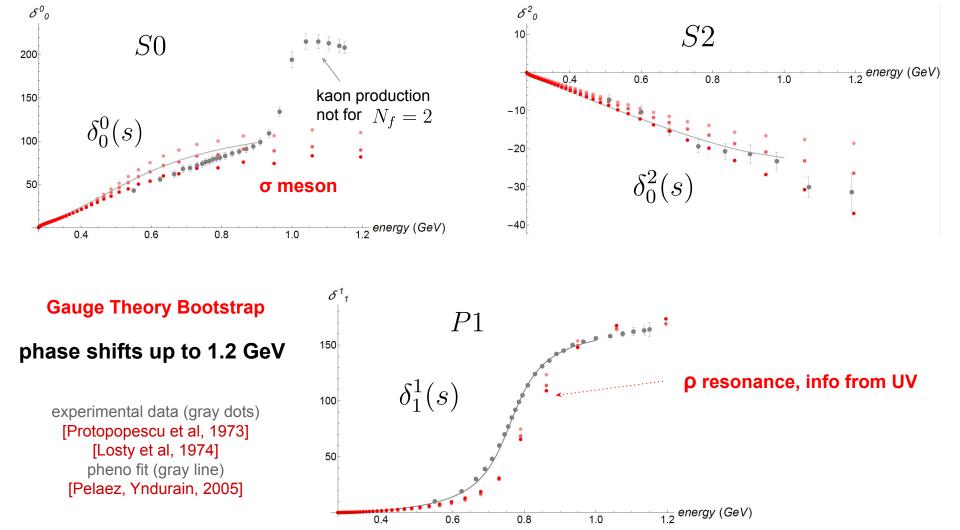
$$P1 : \frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_1^1(x) x^n dx = \frac{1}{2(2\pi)^4} \left\{ \frac{1}{2\pi(n+2)} \left(1 + \frac{\alpha_s}{\pi} \right) + \dots \right\}, \ n \ge -1$$

Asymptotic behavior of form factor from pQCD

perturbative QCD also controls asymptotic behavior of form factors

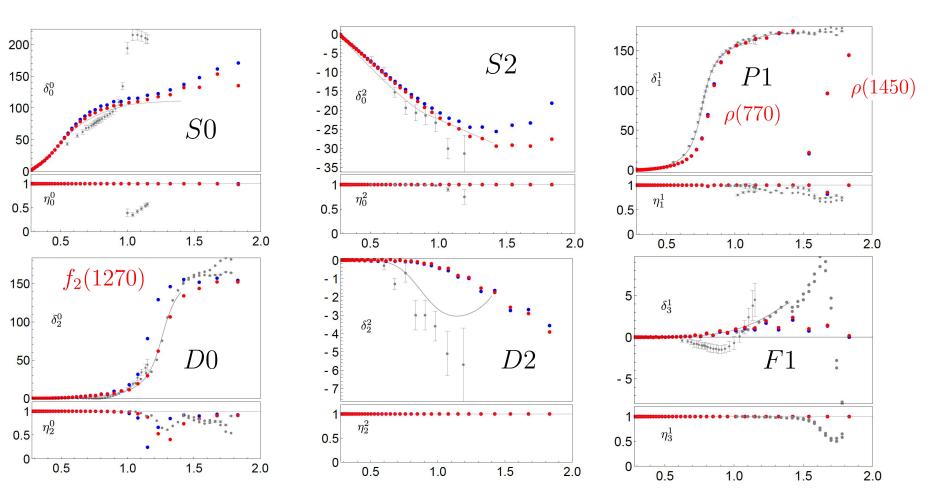






Gauge Theory Bootstrap

phase shifts up to 2 GeV



Low energy parameters: threshold expansions

scattering lengths and effective range parameters

$$\operatorname{Re} f_{\ell}^{I}(s) \stackrel{k \to 0}{\simeq} \frac{2m_{\pi}}{\pi} k^{2\ell} (a_{\ell}^{I} + b_{\ell}^{I} k^{2} + \dots) \quad k = \frac{\sqrt{s - 4m_{\pi}^{2}}}{2}$$

pion charge radii

$$F_0^0(s) = F_0^0(0) \left[1 + \frac{1}{6} s \langle r^2 \rangle_S^{\pi} + \dots \right]$$

$$F_1^1(s) = 1 + \frac{1}{6} s \langle r^2 \rangle_V^{\pi} + \dots$$

	GTB	Exp. fits	
$\langle r^2 \rangle^\pi_S$	0.64,0.61	$0.61\pm0.04\mathrm{fm}^2$	
$\langle r^2 \rangle_V^\pi$	0.388, 0.381	$0.439 \pm 0.008{\rm fm^2}$	

	W	GTB	CGL	PY
$a_0^{(0)}$	0.16	0.178, 0.182	0.220 ± 0.005	0.230 ± 0.010
$a_0^{(2)}$	-0.046	-0.0369, -0.0378	-0.0444 ± 0.0010	-0.0422 ± 0.0022
$b_0^{(0)}$	0.18	0.287, 0.290	0.280 ± 0.001	0.268 ± 0.010
$b_0^{(2)}$	-0.092	-0.064, -0.066	-0.080 ± 0.001	-0.071 ± 0.004
$a_1^{(1)}$	31	28.0, 28.4	37.0 ± 0.13	$38.1 \pm 1.4 \; (\times 10^{-3})$
$b_1^{(1)}$	0	2.86, 3.37	5.67 ± 0.13	$4.75 \pm 0.16 \; (\times 10^{-3})$
$a_2^{(0)}$	0	12.6, 12.3	17.5 ± 0.3	$18.0 \pm 0.2 \; (\times 10^{-4})$
$a_2^{(2)}$	0	2.87, 2.81	1.70 ± 0.13	$2.2 \pm 0.2 \; (\times 10^{-4})$

Low energy parameters: chiral Lagrangian coefficients

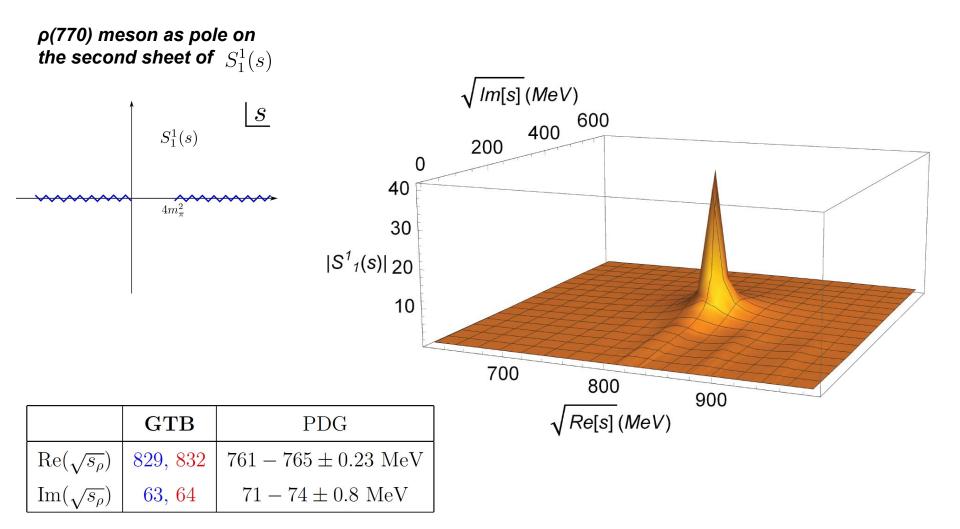
calculate the chiral Lagrangian coefficients

$$a_{D0} = \frac{1}{1440\pi^{3}f_{\pi}^{4}} \left\{ \bar{l}_{1} + 4\bar{l}_{2} - \frac{53}{8} \right\} + \dots$$

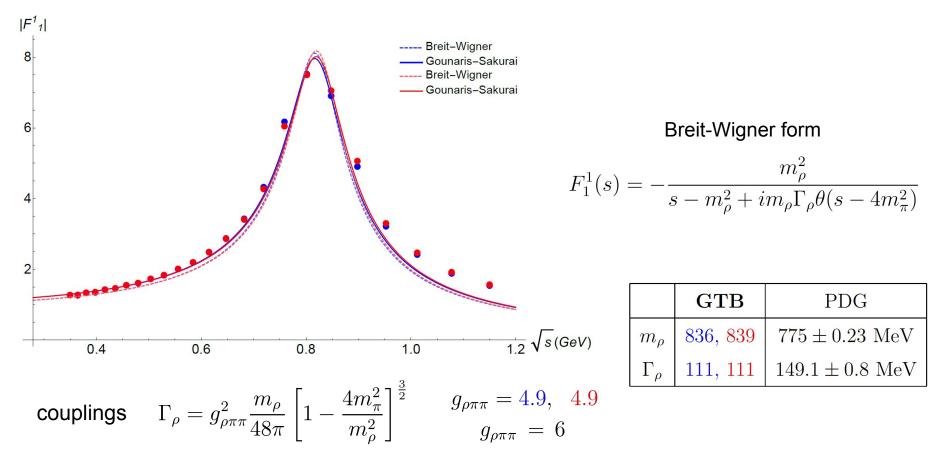
$$a_{D2} = \frac{1}{1440\pi^{3}f_{\pi}^{4}} \left\{ \bar{l}_{1} + \bar{l}_{2} - \frac{103}{40} \right\} + \dots$$
[Gasser Leutwyler, 1984]
$$F_{0}(s) = 1 + \frac{s}{16\pi^{2}f_{\pi}^{2}} \left(\bar{l}_{4} - \frac{13}{12} \right) + \dots$$

$$F_{1}(s) = 1 + \frac{s}{96\pi^{2}f_{\pi}^{2}} (\bar{l}_{6} - 1) + \dots$$

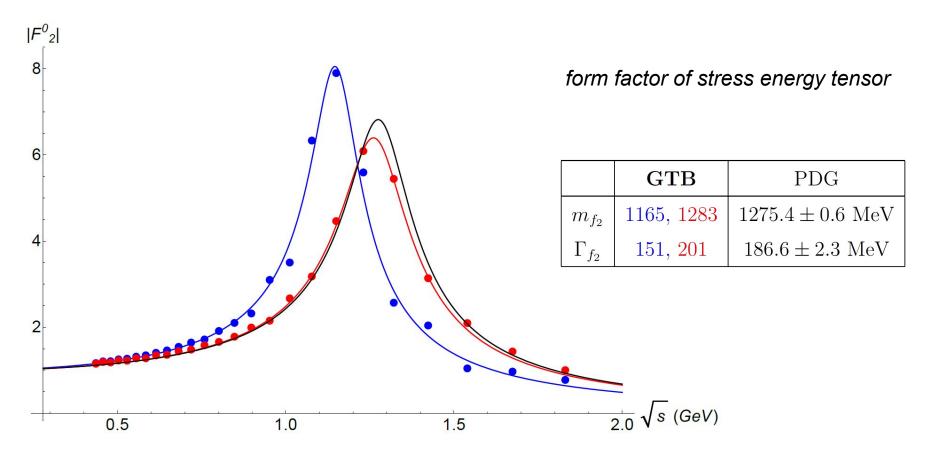
	GTB	GL	Bij	CGL
\overline{l}_1	0.92,0.93	-2.3 ± 3.7	-1.7 ± 1.0	-0.4 ± 0.6
\overline{l}_2	4.1, 4.0	6.0 ± 1.3	6.1 ± 0.5	4.3 ± 0.1
\overline{l}_4	$4.7, \ 4.6$	4.3 ± 0.9	4.4 ± 0.3	4.4 ± 0.2
\overline{l}_6	14.3, 14.1	16.5 ± 1.1	$16.0 \pm 0.5 \pm 0.7$	

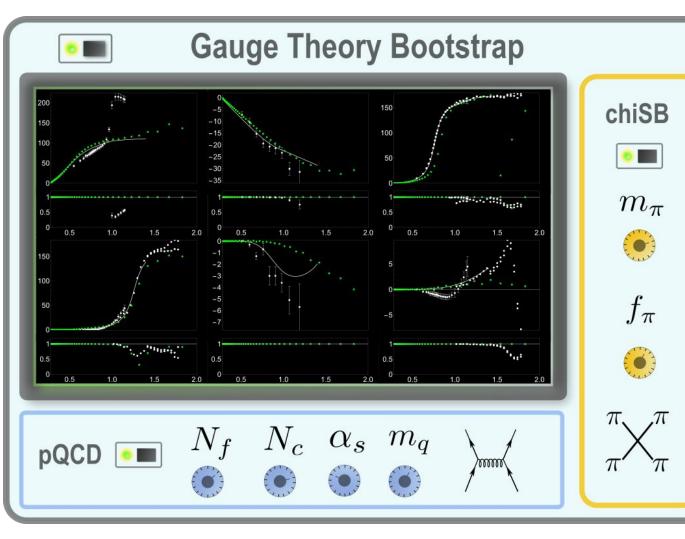


Vector (electromagnetic) form factor and $\rho(770)$ meson



Gravitational form factor and f_2 meson





- theoretical/numerical computation
- good track for solving QCD (gauge theories)
- improvements to make: more precise and robust
- fast: 20min on average laptop

Ancillary files (details): • GTB_numerics.m • GTB_numerics.nb Thank you !