
             Chiral Dynamics 2024, Ruhr-Universität Bochum                                                                       26.08.2024

Proton scalar and spin polarisabilities        
from Compton scattering data 

Timon Esser in collaboration with 
Franziska Hagelstein, Vadim Lensky 
and Vladimir Pascalutsa (JGU)



Chiral Dynamics 2024, Bochum                                                              Timon Esser (JGU Mainz)                                                             26.08.2024

Electromagnetic Polarizabilities
Proton is 1000 times “stiffer” than naïve expectation

Electric dipole polarizability:


induced electric dipole 
polarization (linear dielectric)

F. Hagelstein et al. / Progress in Particle and Nuclear Physics 88 (2016) 29–97 33

π

Fig. 2.1. Naive view of the proton, consisting of a pion cloud and a quark core, placed between the plates of a parallel plate capacitor. The left (right) figure
shows the capacitor discharged (charged).
Source: Plot courtesy of Phil Martel.

Fig. 2.2. Naive view of the proton, consisting of a pion cloud and a quark core, placed between the poles of a magnet. The left (right) figure shows the
external magnetic field turned off (on).
Source: Plot courtesy of Phil Martel.

quark core. In the case of themagnetic dipole polarizability �M1, the diamagnetic contribution of the pion cloud is competing
against the paramagnetic contribution of the quark-core excitation, see Fig. 2.2. The two contributions are largely canceling
each other, leaving the nucleon with a relatively small magnetic polarizability, cf. Section 2.4 for details.

Other intuitive pictures of the nucleon polarizabilities emerge in quark models [72–76], the Skyrme model [77–82],
and the Nambu–Jona-Lasinio model [83]. All of them point out the large paramagnetic contribution due to the nucleon-to-
�(1232)M1 transition.

While for the atoms the polarizabilities are of order of the atomic volume, the nucleon being much tighter bound (nearly
99% of its mass coming from the binding force) has polarizabilities which are about three orders of magnitude smaller than
its volume. It is customary to use the units of 10�4 fm3 for the dipole polarizabilities of the nucleon.

The critical electric field strength needed to induce any appreciable polarizability of the nucleon can be estimated as the
ratio of the average energy level spacing in the nucleon to the size of the nucleon, i.e., Ecrit. ⇡ 100 MeV/(e fm) = 1023 V/m.
Static electric field strengths of this intensity are not available in a laboratory, andwill never be available. However, a classical
estimate of the electric field strength of a 100MeV photon Compton scattering from the nucleon is approximately 1023 V/m.
Given the absence of static e.m. fields of the required immensity, the CS process is currently the best available tool for
accessing the nucleon polarizabilities experimentally, cf. Section 4.

In the rest of this section we introduce the nucleon polarizabilities and discuss their calculation from first principles. We
shall focus on describing the efforts to compute the nucleon polarizabilities in lattice QCD and chiral EFT. In the latter case,
calculations of the CS observables will be discussed too.

It is worthwhile noting that is a number of sophisticated theoretical approaches, other than lattice QCD and chiral EFT,
applied to the nucleon polarizabilities and low-energy CS. They include: the fixed-t dispersion relations [84–87], effective-
Lagrangian models with [88–91] and without [92–94] causality constraints, the Dyson–Schwinger equation approach to
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quark core. In the case of themagnetic dipole polarizability �M1, the diamagnetic contribution of the pion cloud is competing
against the paramagnetic contribution of the quark-core excitation, see Fig. 2.2. The two contributions are largely canceling
each other, leaving the nucleon with a relatively small magnetic polarizability, cf. Section 2.4 for details.

Other intuitive pictures of the nucleon polarizabilities emerge in quark models [72–76], the Skyrme model [77–82],
and the Nambu–Jona-Lasinio model [83]. All of them point out the large paramagnetic contribution due to the nucleon-to-
�(1232)M1 transition.

While for the atoms the polarizabilities are of order of the atomic volume, the nucleon being much tighter bound (nearly
99% of its mass coming from the binding force) has polarizabilities which are about three orders of magnitude smaller than
its volume. It is customary to use the units of 10�4 fm3 for the dipole polarizabilities of the nucleon.

The critical electric field strength needed to induce any appreciable polarizability of the nucleon can be estimated as the
ratio of the average energy level spacing in the nucleon to the size of the nucleon, i.e., Ecrit. ⇡ 100 MeV/(e fm) = 1023 V/m.
Static electric field strengths of this intensity are not available in a laboratory, andwill never be available. However, a classical
estimate of the electric field strength of a 100MeV photon Compton scattering from the nucleon is approximately 1023 V/m.
Given the absence of static e.m. fields of the required immensity, the CS process is currently the best available tool for
accessing the nucleon polarizabilities experimentally, cf. Section 4.

In the rest of this section we introduce the nucleon polarizabilities and discuss their calculation from first principles. We
shall focus on describing the efforts to compute the nucleon polarizabilities in lattice QCD and chiral EFT. In the latter case,
calculations of the CS observables will be discussed too.

It is worthwhile noting that is a number of sophisticated theoretical approaches, other than lattice QCD and chiral EFT,
applied to the nucleon polarizabilities and low-energy CS. They include: the fixed-t dispersion relations [84–87], effective-
Lagrangian models with [88–91] and without [92–94] causality constraints, the Dyson–Schwinger equation approach to
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Static electric field strengths of this intensity are not available in a laboratory, andwill never be available. However, a classical
estimate of the electric field strength of a 100MeV photon Compton scattering from the nucleon is approximately 1023 V/m.
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ratio of the average energy level spacing in the nucleon to the size of the nucleon, i.e., Ecrit. ⇡ 100 MeV/(e fm) = 1023 V/m.
Static electric field strengths of this intensity are not available in a laboratory, andwill never be available. However, a classical
estimate of the electric field strength of a 100MeV photon Compton scattering from the nucleon is approximately 1023 V/m.
Given the absence of static e.m. fields of the required immensity, the CS process is currently the best available tool for
accessing the nucleon polarizabilities experimentally, cf. Section 4.

In the rest of this section we introduce the nucleon polarizabilities and discuss their calculation from first principles. We
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Given the absence of static e.m. fields of the required immensity, the CS process is currently the best available tool for
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polarizabilities are not fixed, but rather free to vary within
their experimental errors. The small systematic error for the
latter term indicates the new dataset has only a limited
dependency on the spin polarizabilities, and thus making it
well suited for a precise study of the two scalar terms.
The extractions of the scalar polarizabilities reported in

Table I—in particular of βM1—exhibit a moderate model
dependence. To provide a best estimate of the central values
for the two parameters, the results from the three theories
were combined using weighted average, taking the quad-
ratic sum of the statistical and systematic uncertainties as
weights. For each error the largest contributions among the
different theories was assigned. Additionally, the largest of
the differences between each theory and the average was
used to estimate an additional error due to the model
dependence for both αE1 and βM1. The best values for the
extraction of the scalar polarizabilities from the new data
using the Baldin sum rule constraint are

αE1 ¼ 10.99" 0.16" 0.47" 0.17" 0.34;

βM1 ¼ 3.14" 0.21" 0.24" 0.20" 0.35; ð5Þ

where the errors are statistical, systematic, spin polar-
izability dependent, and model dependent. A correlation
coefficient between the two scalar polarizabilities of

ραE1−βM1
¼ −0.75 was also reported by the fitter. The effect

of the constraint was checked by repeating the fits without
the additional point at αE1 þ βM1 ¼ 13.8" 0.4. The
obtained values for αE1 and βM1 are in agreement with
the ones of Eq. (5) within 1.5σ and 0.5σ, respectively,
indicating the limited effect of the constraint on the final
results.
Figure 3 shows the scalar polarizability extraction from

this work as the blue full ellipse. Also shown are various
previously published global extractions and predictions of
these two parameters. The azure dotted circle shows in
particular the results from the TAPS Collaboration [16],
the highest statistics dataset published previously. The
improvement in the uncertainty of the scalar polarizabilities
extracted from the new data is clearly visible.
Summary.—In summary, a new precision measurement

of the proton Compton scattering unpolarized cross section
and beam asymmetry is presented. A fit to the new data
using different theoretical models resulted in an extraction
of the scalar polarizabilities αE1 and βM1 from one con-
sistent dataset with an unprecedented precision. The new
results will be important for resolving the current ambi-
guities in the extraction of these fundamental quantities.
Moreover, these new experimental data can be used in
combination with the already published ones on single and
double polarization observables from the A2 Collaboration
[17,18,33], to obtain the first combined extraction of all the
six proton polarizabilities from experimental data measured
at a single facility, achieving an important new milestone in
the MAMI program.

The authors wish to acknowledge the outstanding sup-
port of the accelerator group and operators of MAMI. We
also wish to acknowledge and thank J. McGovern, V.
Pascalutsa, and B. Pasquini for providing us with their
theory codes, together with H. Grießhammer and M.
Vanderhaegen for the theoretical contributions and support.
This project has received funding from the European
Unions Horizon 2020 research and innovation program
under Grant Agreement No. 824093. This work has been
supported by the U.K. STFC (ST/L005719/1, ST/P004458/
1, ST/T002077/1,ST/P004385/2, ST/V002570/1, ST/
P004008/1 and ST/L00478X/2) grants, the Deutsche
Forschungsgemeinschaft (SFB443, SFB/TR16, and
SFB1044), DFG-RFBR (Grant No. 09-02-91330),
Schweizerischer Nationalfonds (Contracts No. 200020-
175807, No. 200020-156983, No. 132799, No. 121781,
No. 117601), the U.S. Department of Energy (Offices of
Science and Nuclear Physics, Awards No. DE-SC0014323,
No. DEFG02-99-ER41110, No. DE-FG02-88ER40415,
No. DEFG02-01-ER41194) and National Science
Foundation (Grants No. NSF OISE-1358175; No. PHY-
1039130, No. PHY-1714833, No. PHY-2012940, No. IIA-
1358175), INFN (Italy), and NSERC of Canada (Grant
No. FRN-SAPPJ2015-00023).

FIG. 3. Results of αE1 vs βM1 for the proton, obtained from
different experiments and theories. The extraction from our data is
depicted as blue full ellipse. The loosely dotted azure ellipse shows
the result from the TAPS Collaboration [16]. The dotted purple
circle is the BχPT prediction [3], the green dashed-dotted curve is
the extraction within HBχPT [43], and the orange dashed curve is
thebootstrap-based fit usingDR[48,49].Theblackcircle shows the
values quoted by thePDG[50]. TheBaldin sum rule constraintwas
used in the present extraction, as well as in those from TAPS,
HBχPT, and HDPV. All contours correspond to 1σ level.
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with χ2 ¼ 13.2 for 12 degrees of freedom. We do not quote
theoretical uncertainties as this extraction is only given as a
consistency check. Figure 4 shows the results of the
extraction of αpE1 and βpM1 with and without the BSR
constraint. We see that the one-parameter fit and its 1σ
limits are contained within the 1σ ellipse of the two-
parameter fit, which validates the use of the BSR in the
former.
There is some variation between our results and the

values of Eq. (2) extracted from the same theoretical
framework based on the world database of unpolarized
data over a much wider energy range. This variation also
pertains to the current PDG values [26]

αpE1 ¼ 11.2" 0.4; βpM1 ¼ 2.5" 0.4: ð7Þ

The pioneering extraction from the Σ3 data obtained by
MAMI [25], while in better agreement with both of these,
has a sufficiently large uncertainty that it is also in agree-
ment with our extraction. Fitting to cross sections rather
than Σ3 gives our result a smaller uncertainty, though
conducted at a lower average energy.
Recently, there have been other determinations from the

full set or a subset of the same unpolarized data, in different
theoretical frameworks; for examples, see Refs. [27–29]. At
lower energies, different theories tend to agree better;
therefore, high-precision data in the energy region of our
experiments have an important role to play in resolving the
discrepancy. The present work, as the first nanobarn-level
Compton scattering measurements at HIGS, demonstrated
that with the improved statistics of the HIGS data, one can
extract the proton polarizabilities with better precision.
In summary, new measurements on Compton scattering

from the proton were performed at HIGS below the pion-

production threshold. The polarized cross sections were
extracted for the first time, and unpolarized cross sections
of this work are consistent with the global database. The
sum-rule-free extraction of αpE1 and βpM1 using the EFT
framework is compatible with the BSR. This work provided
a novel experimental approach for Compton scattering
from the proton in low energies and strongly motivates new
high-precision measurements at HIGS to improve the
accuracy in proton polarizabilities determinations.

We acknowledge the support of the HIGS accelerator
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βM1 (ChPT) = 3.9(0.7) × 10−4 fm3

βM1 (DR) = 2.4(0.6) × 10−4 fm3

βM1 (MAMI) = 3.14(0.51) × 10−4 fm3

βM1 (HIGS) = 0.2(1.2) × 10−4 fm3
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• Our Aim: Model-independent extraction 

of polarizabilities through partial wave 

analysis
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Compton Scattering
 Low-energy expansion in terms of polarizabilities

• Low-energy (low-momentum) nucleon structure is encoded in low-energy constants 
(polarisabilities etc.) that parameterise the Compton scattering (CS) amplitude


• Different kinematical regimes:


• Real CS (RCS):  


• forward limit:  


• Virtual CS (VCS) [see N. Sparveris on Wed.]


• Forward doubly-virtual CS  
[see F. Hagelstein, D. Ruth on Fri.]

q2 = q′ 
2 = 0

q = q′ , p = p′ 

 5
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 Low-energy expansion in terms of polarizabilities
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dσ(NB)

dΩ
= −

α
M ( ν′ 

ν )
2

νν′ [αE1(1 + cos2 θ) + 2βM1 cos θ] + 𝒪(ν4)

2

| {z }
Born

| {z }
non-Born

= + ++

FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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(2)
the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]

f̄
l±
EE

⇠ f̄
l±
MM

⇠ w2l , f̄
l+
EM

⇠ f̄
l+
ME

⇠ w2l+1 , (3)

Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄
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2+
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2�
MM

,
give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an

• Born RCS is well known → mass, charge, anomalous magnetic moment and t-channel pion pole

• Non-Born RCS → polarizabilities (dipole, spin, …)

(Baryon ChPT)
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w
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s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f
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. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.
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abilities as well as the residual functions are free parameters,
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•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄

2+
EE

, f̄
2�
EE

, f̄
2+
MM

, f̄
2�
MM

,
give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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system, T
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s 0l 0,sl (w) are the partial-wave amplitudes, d
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l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
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amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
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rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f
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rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
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Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,

f̄ =
�

f̄
1+
EE

, f̄
1�
EE

, f̄
1+
MM

, f̄
1�
MM

, f̄
1+
EM

, f̄
1+
ME

, f̄
2+
EE

, f̄
2�
EE

, f̄
2+
MM

, f̄
2�
MM

�
,

(2)
the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄
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give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an

Helicity amplitudes
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
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(2J+1)T
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s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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multipoles [cf. Eq. (3)], we assume the following parametriza-
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄
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give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:

f̄
1+
EE

(n) = n2 Mp
s


aE1

3
+

n
3

✓
�aE1 +bM1

M
+ gE1E1

◆
+
⇣ n

M

⌘2
f

R

1 (n)
�
,

f̄
1�
EE

(n) = n2 Mp
s


aE1

3
+

n
3

✓
�aE1 +bM1

M
�2gE1E1

◆
+
⇣ n

M

⌘2
f

R

2 (n)
�
,

f̄
1+
MM

(n) = n2 Mp
s


bM1

3
+

n
3

✓
�bM1 +aE1

M
+ gM1M1

◆
+
⇣ n

M

⌘2
f

R

3 (n)
�
, (4)

f̄
1�
MM

(n) = n2 Mp
s


bM1

3
+

n
3

✓
�bM1 +aE1

M
�2gM1M1

◆
+
⇣ n

M

⌘2
f

R

4 (n)
�
,

f̄
1+
EM

(n) = n3 Mp
s


gE1M2

6
+

n
6

✓
�6gE1M2 +3gM1E2 +3gM1M1

4M
� bM1

8M2

◆
+
⇣ n

M

⌘2
f

R

5 (n)
�
,

f̄
1+
ME

(n) = n3 Mp
s


gM1E2

6
+

n
6

✓
�6gM1E2 +3gE1M2 +3gE1E1

4M
� aE1

8M2

◆
+
⇣ n

M

⌘2
f

R

6 (n)
�
,

where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•
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(2J+1)T
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s 0l 0,sl (w)d
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s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
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rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f
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rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f
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i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.
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Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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(2)
the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄
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give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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⇠ w2l , f̄
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⇠ w2l+1 , (3)

Furthermore, the existing BcPT calculations [13, 14] show
that the four l = 2 non-Born multipoles, f̄
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,
give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:

f̄
1+
EE

(n) = n2 Mp
s


aE1

3
+

n
3

✓
�aE1 +bM1

M
+ gE1E1

◆
+
⇣ n

M

⌘2
f

R

1 (n)
�
,

f̄
1�
EE

(n) = n2 Mp
s


aE1

3
+

n
3

✓
�aE1 +bM1

M
�2gE1E1

◆
+
⇣ n

M

⌘2
f

R

2 (n)
�
,

f̄
1+
MM

(n) = n2 Mp
s


bM1

3
+

n
3

✓
�bM1 +aE1

M
+ gM1M1

◆
+
⇣ n

M

⌘2
f

R

3 (n)
�
, (4)

f̄
1�
MM

(n) = n2 Mp
s


bM1

3
+

n
3

✓
�bM1 +aE1

M
�2gM1M1

◆
+
⇣ n

M

⌘2
f

R

4 (n)
�
,

f̄
1+
EM

(n) = n3 Mp
s


gE1M2

6
+

n
6

✓
�6gE1M2 +3gM1E2 +3gM1M1

4M
� bM1

8M2

◆
+
⇣ n

M

⌘2
f

R

5 (n)
�
,

f̄
1+
ME

(n) = n3 Mp
s


gM1E2

6
+

n
6

✓
�6gM1E2 +3gE1M2 +3gE1E1

4M
� aE1

8M2

◆
+
⇣ n

M

⌘2
f

R

6 (n)
�
,

where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

initial (final) nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

with J the total angular momentum of the photon-proton sys-
tem, T

J

s 0l 0,sl (w) the partial-wave amplitudes, d
J

l 0,l (q) the
Wigner d-function, w and q the photon energy and scatter-
ing angle in the center-of-mass frame; s, t, u are Mandelstam
invariants.

The partial-wave amplitudes T
J(w) are then linearly re-

lated to the amplitudes with definite parity and angu-
lar momentum l, i.e., multipoles f

l±
rr 0(w), with r,r 0 =

E(lectric), or M(agnetic). The infinite sum over half-integer J

is then replaced by the sum over integer l = J⌥1/2. Note that
f

0+
rr 0 = 0, by definition; hence the summation starts at l = 1.

In this work, we first write the amplitude as the sum of
the Born, T

Born, and the rest (non-Born) T̄ , as illustrated in
Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born + f̄ . We then truncate the multipole expansion of
the non-Born amplitude at J = 3/2, whereas the Born ampli-

tude is treated exactly. We thus retain the ten lowest non-Born
multipoles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [25]
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give tiny contributions below the pion threshold. In what fol-
lows we will either neglect them, or fix them to the values
given by the latest BcPT calculation [14]. We shall therefore
fit only the six l = 1 non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:

f̄
1+
EE

(Eg) = E
2
g

Mp
s

"
aE1

3
+

Eg
3

✓
�aE1 +bM1

M
+ gE1E1

◆
+

✓
Eg
M

◆2
f

R

1 (Eg)

#
,

f̄
1�
EE

(Eg) = E
2
g

Mp
s

"
aE1

3
+

Eg
3

✓
�aE1 +bM1

M
�2gE1E1

◆
+

✓
Eg
M

◆2
f

R

2 (Eg)

#
,

f̄
1+
MM

(Eg) = E
2
g

Mp
s

"
bM1

3
+

Eg
3

✓
�bM1 +aE1

M
+ gM1M1

◆
+

✓
Eg
M

◆2
f

R

3 (Eg)

#
, (4)

f̄
1�
MM

(Eg) = E
2
g

Mp
s

"
bM1

3
+

Eg
3

✓
�bM1 +aE1

M
�2gM1M1

◆
+

✓
Eg
M

◆2
f

R

4 (Eg)

#
,

f̄
1+
EM

(Eg) = E
3
g

Mp
s

"
gE1M2

6
+

Eg
6

✓
�6gE1M2 +3gM1E2 +3gM1M1

4M
� bM1

8M2

◆
+

✓
Eg
M

◆2
f

R

5 (Eg)

#
,

f̄
1+
ME

(Eg) = E
3
g

Mp
s

"
gM1E2

6
+

Eg
6

✓
�6gM1E2 +3gE1M2 +3gE1E1

4M
� aE1

8M2

◆
+

✓
Eg
M

◆2
f

R

6 (Eg)

#
,

where we changed the photon energy from the center-of-mass
w to the lab frame Eg = w

p
s/M. The first term in each

of the square brackets of Eq. (4) is given by one of the six
static polarizabilities, four of which, denoted by g’s, are spin-
dependent. The 2nd terms are the recoil corrections (see, e.g.,
Ref. [14]). The 3rd terms are given by the “residual func-
tions” f

R

i
. The parametrization of Eq. (4) ensures the correct

low-energy behavior of these multipoles. It does not imply
any approximation: the six static polarizabilities as well as

the residual functions are free parameters, which will next be
determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
experimental observable, such as cross section or asymmetry,
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helicity amplitudes Ts 0l 0,sl (s, t) with s (s 0) the helicity of
initial (final) photon and l (l 0) for the helicity initial (final)
nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J
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s 0�l 0,s�l (q), (1)

where J is the total angular momentum of the photon-proton
system, T

J

s 0l 0,sl (w) are the partial-wave amplitudes, d
J

l 0,l (q)
the Wigner d-function, and w, q the photon energy, scat-
tering angle in the center-of-mass frame. The partial-wave
amplitudes T

J(w) are then linearly related to the amplitudes
with definite parity and angular momentum l, i.e., multipoles
f

l±
rr 0(w), with r,r 0 = E(lectric), or M(agnetic). The infinite

sum over half-integer J is then replaced by the sum over inte-
ger l = J ⌥ 1/2. Note that f

0+
rr 0 = 0, by definition; hence the

sum starts at l = 1.
In this work, we first write the amplitude as the sum of

the Born T
Born and non-Born (the rest) T̄ , as illustrated in

Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born+ f̄ . We then truncate the multipole expansion of the

non-Born amplitude at l = 2, whereas the Born amplitude is
treated exactly. We thus retain the ten lowest non-Born multi-
poles,
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the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [22]
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give tiny contributions below the pion threshold. Rather than
neglecting them, we fix their values those given by the latest
BcPT calculation [14]. We shall therefore fit only the six l = 1
non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w

p
s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f

R

i
. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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where we changed the photon energy from CM frame w to the
lab-frame energy n = w
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s/M. The 1st terms in the square

brackets of Eq. (4) are given by the six static polarizabilities,
four of which, denoted by g’s, are spin-dependent. The 2nd
terms are the recoil corrections (see, e.g., Ref. [14]). The 3rd
terms are given by the “residual functions” f
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. They are re-

quired to be of “natural size”, which is assumed to be set here
by the corresponding polarizability [i.e., | f R

1 (n)| aE1, etc.].
Together with this condition, the parametrization of Eq. (4)
ensures the correct low-energy behavior of these multipoles.

It does not imply any approximation: the six static polariz-
abilities as well as the residual functions are free parameters,
which will next be determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
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Angular distribution

3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by
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dW
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��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):
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Â
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cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:

ds
dW

S3 =
1

128p2s
Â

s 0 l 0l
Re(T ⇤

s 0l 0,�1l Ts 0l 0,1l )

J<5/2
= sin2 q

2

Â
n=0

dn cosnq , (8)

thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:

Ts 0l 0sl
t=0
= c†

l 0
�

f (n)~e⇤s 0 ·~es +g(n) i(~e⇤s 0⇥~es ) ·~s
 

cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:

f (n) = � a
M

+
n2

4p2

Z •

0

dn 0

n 02 �n2 � i0+
⇥
s abs

1/2(n
0)+s abs

3/2(n
0)
⇤

=

p
s

2M

•

Â
L=0

(L+1)2
n
(L+2)

�
f
(L+1)�
EE

+ f
(L+1)�
MM

�
+L

�
f

L+
EE

+ f
L+
MM

�o

J<5/2
=

p
s

M

�
f

1�
EE

+2 f
1+
EE

+ f
1�
MM

+2 f
1+
MM

+6 f
2�
EE

+9 f
2+
EE

+6 f
2�
MM

+9 f
2+
MM

�
, (10a)

g(n) = �a{2n
2M2 +

n3

4p2

Z •

0

dn 0

n 0

s abs
1/2(n

0)�s abs
3/2(n

0)

n 02 �n2 � i0+

=

p
s

2M

•

Â
L=0

(L+1)
n
(L+2)

�
f
(L+1)�
EE

+ f
(L+1)�
MM

�
�L

�
f

L+
EE

+ f
L+
MM

�
�2L(L+2)

�
f

L+
EM

+ f
L+
ME

�o

J<5/2
=

p
s

M

�
f

1�
EE

� f
1+
EE

�6 f
1+
EM

�6 f
1+
ME

+ f
1�
MM

� f
1+
MM

+3 f
2�
EE

�3 f
2+
EE

+3 f
2�
MM

�3 f
2+
MM

�
. (10b)

where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

Beam asymmetry
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3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:

ds
dW

S3 =
1

128p2s
Â

s 0 l 0l
Re(T ⇤

s 0l 0,�1l Ts 0l 0,1l )

J<5/2
= sin2 q

2

Â
n=0

dn cosnq , (8)

thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:

Ts 0l 0sl
t=0
= c†

l 0
�

f (n)~e⇤s 0 ·~es +g(n) i(~e⇤s 0⇥~es ) ·~s
 

cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

Spin-independent 
amplitude

Spin-dependent  
amplitude
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3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:

ds
dW

S3 =
1

128p2s
Â

s 0 l 0l
Re(T ⇤

s 0l 0,�1l Ts 0l 0,1l )

J<5/2
= sin2 q

2

Â
n=0

dn cosnq , (8)

thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:

Ts 0l 0sl
t=0
= c†

l 0
�

f (n)~e⇤s 0 ·~es +g(n) i(~e⇤s 0⇥~es ) ·~s
 

cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

Spin-independent 
amplitude

Spin-dependent  
amplitude

3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:

ds
dW

S3 =
1

128p2s
Â

s 0 l 0l
Re(T ⇤

s 0l 0,�1l Ts 0l 0,1l )

J<5/2
= sin2 q

2

Â
n=0

dn cosnq , (8)

thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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f (n)~e⇤s 0 ·~es +g(n) i(~e⇤s 0⇥~es ) ·~s
 

cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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S3 =
1
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1
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s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
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=
4
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cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:

ds
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
Â

s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:

ds
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by

ds
dW

=
1

256p2s
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s 0 l 0sl

��Ts 0l 0,s l
��2. (5)

Substituting in here the multipole expansion of T we obtain
(for J < 5/2):

ds
dW

=
4

Â
n=0

cn cosnq , (6)

where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by
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=
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Substituting in here the multipole expansion of T we obtain
(for J < 5/2):
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=
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where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
ds||�ds?

ds||+ds?
, (7)

where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
plane), we have:
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
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rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by
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where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as

S3 =
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where s|| and s? are the CS cross sections with linear photon-
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plane), we have:
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are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

where W ¼
ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2

k¼−2
CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þmπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):

σReggeðWÞ ¼ c1Wp1 þ c2Wp2 : ð13Þ

For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.

TABLE I. Fitting parameters for the resonances (11) obtained
for fits I and II.

M (MeV) Γ (MeV) AðμbÞ
Fit I 1213.6% 0.1 117.6% 1.9 522.7% 17.0

1412.8% 5.9 82.8% 26.8 40.1% 33.8
1496.0% 2.8 136.5% 11.1 161.8% 32.4
1649.4% 4.1 135.3% 15.3 83.2% 22.7
1697.5% 2.6 18.8% 12.6 18.2% 26.0
1894.3% 15.6 302.0% 41.3 31.5% 8.7

Fit II 1214.8% 0.1 99.0% 1.1 502.3% 12.3
1403.9% 6.2 118.2% 19.6 51.8% 23.8
1496.9% 2.1 133.4% 9.4 162.0% 29.2
1648.0% 4.4 135.2% 15.9 83.6% 23.8
1697.2% 2.7 21.2% 13.2 18.7% 25.9
1893.7% 17.4 323.5% 45.3 31.7% 9.1

TABLE II. Fitting parameters for the background (12) obtained
for fits I and II in the resonance region.

Fit I Fit II

C−2 ðμb GeV2Þ 0.44% 0.22 0.26% 0.17
C−1 ðμb GeVÞ −11.06% 3.69 −7.97% 2.89
C0 ðμbÞ 74.38% 20.16 57.27% 16.09
C1 ðμb GeV−1Þ 22.18% 37.71 54.26% 31.07
C2 ðμb GeV−2Þ 37.69% 21.48 19.51% 18.17
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CHAPTER III

COMPTON SCATTERING AND POLARIZABILITIES

In this Chapter, we classify the CS processes (Section III.1) and give a general introduction
into the concepts of polarizabilities (Section III.1.1) and model-independent sum rules (Sec-
tion III.1.2). After that, we will focus on the RCS while delegating the case of VVCS to
Chapter IV. The status of our knowledge of the lowest-order nucleon polarizabilities is reviewed
in Section III.2. In Section III.3, we will study the Compton contribution to photoabsorption
and the associated CS sum rules in scalar and spinor one-loop QED. A modification of the sum
rules which deals with the infrared divergences has been published in Refs. [238, 239].

1. Basic Principles

Figure I.2 shows a CS process — an absorption and subsequent emission of a photon by a target.
The particles in the initial and final states are the same, and their initial (final) momenta
are denoted by q(q0) for the photon and p(p0) for the target. The photons can be real, i.e.,
q2 = 0 = q0 2, or virtual. In VCS, the initial photon is virtual and the final photon is real,
�⇤ p ! � p. In VVCS, both photons are virtual.

Im ∝
2

Figure III.1.: Illustration of the optical theorem, relating the imaginary part of the forward Compton
scattering amplitude to the total photoabsorption cross section.

Of special interest is the forward limit, where p = p0 and q = q0. Accordingly, the Mandelstam
invariant t = (q�q0)2 = (p�p0)2 vanishes. In this case, unitarity leads to the optical theorem (see
Ref. [320] for a review of the optical theorem and its modern application in scattering theory).
It expresses the imaginary part of the forward CS amplitude through the total photoabsorption
cross section, as is graphically depicted in Fig. III.1: on the left-hand side (lhs) we have the CS
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3

involves the amplitude squared.
Take for instance the unpolarized angular distribution

ds/dW, given in terms of the helicity amplitudes by
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Substituting in here the multipole expansion of T we obtain
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where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
hence one obtains 5 bilinear relations from this observable.

Similarly, for the beam asymmetry, defined as
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where s|| and s? are the CS cross sections with linear photon-
beam polarization (parallel and perpendicular to the scattering
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thus providing 3 more bilinear relations (generally cn and dn

are different).
The bilinear relations provide a system of quadratic equa-

tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.

B. Linear relations: Sum rules

The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:

Ts 0l 0sl
t=0
= c†

l 0
�

f (n)~e⇤s 0 ·~es +g(n) i(~e⇤s 0⇥~es ) ·~s
 

cl , (9)

where ~es and cl are the photon polarization vector and the
nucleon spinor, with the subscripts showing the corresponding
helicities. These forward amplitudes are given by the sum
rules on one hand and by the multipole expansion on the other:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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where cn are bilinear combinations of the multipoles. In prin-
ciple, each cn can be extracted from the fit to the data, and
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thus providing 3 more bilinear relations (generally cn and dn

are different).
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tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.
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forward CS is characterized by two scalar amplitudes, f (n)
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f
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2 (Eg) and f
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3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:
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L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
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tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.
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The general properties of forward CS, derived from unitar-
ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f
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Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-
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are different).
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tions for the multipoles. In reality, the angular coverage and
precision of the data do not allow for unique solution of these
equations, at least not at the present time. Fortunately, as dis-
cussed in what follows, the sum rules for the forward CS pro-
vide accurate linear relations, which simplify things a lot.
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ity, causality and crossing [26], allow for it to be expressed
entirely in terms of integrals of total photoabsorption cross
sections. In case of a spin-1/2 target such as the proton, the
forward CS is characterized by two scalar amplitudes, f (n)
and g(n), functions of the invariant n = (s�u)/4M, which in
the forward kinematics is identical to the photon lab energy
Eg . The helicity amplitudes are written in terms of the scalar
amplitudes as follows:
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
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The empirical evaluation of the forward amplitudes f (n)
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and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
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where s abs
L is the photoabsorption cross section corresponding

to the total helicity L of the initial g p state, 0+ is an infinites-
imal positive number. The summation of the multipoles is
done over L = J� 1/2 = (l ⌥ 1/2)� 1/2. Note also that the first
term in the sum-rule expressions (due to the proton charge
and anomalous magnetic moment {) are precisely the Born
contributions, whereas the integrals yield the non-Born con-
tributions.

The empirical evaluation of the forward amplitudes f (n)
and g(n) for proton CS has recently been performed in [22]
and [23], respectively. Thus, the sum rules provide two lin-

ear relations on the multipole amplitudes. We use these rela-
tions to eliminate the residual functions f

R

2 (Eg) and f
R

3 (Eg) in

Eq. (4).
The low-energy expansion of the integrals in Eq. (10a) yield

sum rules for the forward combinations of static polarizabili-
ties, such as the Baldin sum rule [27] (see, e.g., [5, Sec. 5] for
more details). Based on the empirical evaluation of these sum
rules, we use [22, 23]:

aE1 +bM1 = (14.0±0.2)⇥10�4 fm3 , (11a)
g0 ⌘ �gE1E1 � gM1M1 � gE1M2 � gM1E2

= (�0.929±0.044)⇥10�4 fm4 (11b)

to eliminate two out of six global parameters in Eq. (4). We
thus are left with four global parameters and four energy-

where W ¼
ffiffiffi
s

p
is the total energy of the γp system. The

background function is from [6]:

σBðWÞ ¼
X2

k¼−2
CkðW −W0Þk; ð12Þ

where W0 ¼ Mp þmπ corresponds with the pion photo-
production threshold.
Observing a significant discrepancy between SAID and

MAID around the Δð1232Þ-resonance peak and a similar

discrepancy between two sets of experimental data, we
have made two different fits:

(I) MAID [12] þ LEGS [13] þ Armstrong et al. [6],
(II) SAID [14] þ MacCormick et al. [15].

They are shown in Fig. 1 by the red solid and blue dashed
lines, respectively. The corresponding values of parameters
are given in Tables I and II. In both fits, we have also made
use of the GRAAL 2007 data [16] shown in the figure by
light blue squares. These data were not available at the time
of the previous sum rule evaluations.
Finally, for the high-energy region, we use the standard

Regge form [20] (p. 191):

σReggeðWÞ ¼ c1Wp1 þ c2Wp2 : ð13Þ

For W in GeV and the cross section in μb, we obtain the
following parameters (for both of our fits):

FIG. 1 (color online). Fits of the experimental data for the total photoabsorption cross section on the proton. Fit I is obtained using
MAID [12] results below the 2π production and data from LEGS [13] and Armstrong et al. [6] above it. Fit II uses SAID [14] and the data
of MacCormick et al. [15]. Both fits use Bartalini et al. [16] and the high-energy data [17–19] displayed in the inset.

TABLE I. Fitting parameters for the resonances (11) obtained
for fits I and II.

M (MeV) Γ (MeV) AðμbÞ
Fit I 1213.6% 0.1 117.6% 1.9 522.7% 17.0

1412.8% 5.9 82.8% 26.8 40.1% 33.8
1496.0% 2.8 136.5% 11.1 161.8% 32.4
1649.4% 4.1 135.3% 15.3 83.2% 22.7
1697.5% 2.6 18.8% 12.6 18.2% 26.0
1894.3% 15.6 302.0% 41.3 31.5% 8.7

Fit II 1214.8% 0.1 99.0% 1.1 502.3% 12.3
1403.9% 6.2 118.2% 19.6 51.8% 23.8
1496.9% 2.1 133.4% 9.4 162.0% 29.2
1648.0% 4.4 135.2% 15.9 83.6% 23.8
1697.2% 2.7 21.2% 13.2 18.7% 25.9
1893.7% 17.4 323.5% 45.3 31.7% 9.1

TABLE II. Fitting parameters for the background (12) obtained
for fits I and II in the resonance region.

Fit I Fit II

C−2 ðμb GeV2Þ 0.44% 0.22 0.26% 0.17
C−1 ðμb GeVÞ −11.06% 3.69 −7.97% 2.89
C0 ðμbÞ 74.38% 20.16 57.27% 16.09
C1 ðμb GeV−1Þ 22.18% 37.71 54.26% 31.07
C2 ðμb GeV−2Þ 37.69% 21.48 19.51% 18.17

EVALUATION OF THE FORWARD COMPTON SCATTERING … PHYSICAL REVIEW D 92, 074031 (2015)

074031-3
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Fig. 5.3. Amplitude f (⌫) for the proton obtained from Eq. (5.50a) using different fits of the total photoabsorption cross section [17,60,201,202] (fit I & II
refer to the results of Ref. [60]). The experimental point is from DESY [181].

Fig. 5.4. Spin-dependent amplitude g(⌫) obtained from Eq. (5.50b). The lower panel shows also the B�PT predictions for this amplitude [49,54].

and 5.4. The first figure shows also the results of previous evaluations and an experimental point from the DESY 1973
experiment [181]. In the second figure the upper panel shows the fit to Im g together with the corresponding result for
the real part. The lower panel shows a comparison of these results with a B�PT calculation at lower energy. Given these
amplitudes, one can determine the two non-vanishing (in the forward limit) observables:

d�
d⌦L

✓=0
= |f |2 + |g|2, ⌃2z

✓=0
= �

fg⇤ + f ⇤g
|f |2 + |g|2

. (5.51)

The obtained ⌃2z [203], compared with the B�PT predictions, demonstrates the importance of chiral dynamics in this
observable, cf. [54, Fig. 16].

One can also evaluate the various sum rules presented in Section 5.4. Evaluations of the sum rules deriving from f (⌫)
(i.e., Baldin sum rule, etc.) are gathered in Table 5.1 for the proton and neutron, respectively. These results are summarized
and compared to the state-of-art �PT results in Figs. 7.1 and 7.2.

Damashek andGilman [201] initiated a study of the high-energy behavior of the amplitude f (⌫) for the proton. In addition
to the Regge prediction, they found a constant contribution comparable in sign and magnitude to the Thomson term:
�↵/M ' �3.03 µb GeV. This extra constant is assumed to correspond to a fixed J = 0 Regge pole (↵i(t) = 0) [204,205],

CHAPTER III

COMPTON SCATTERING AND POLARIZABILITIES

In this Chapter, we classify the CS processes (Section III.1) and give a general introduction
into the concepts of polarizabilities (Section III.1.1) and model-independent sum rules (Sec-
tion III.1.2). After that, we will focus on the RCS while delegating the case of VVCS to
Chapter IV. The status of our knowledge of the lowest-order nucleon polarizabilities is reviewed
in Section III.2. In Section III.3, we will study the Compton contribution to photoabsorption
and the associated CS sum rules in scalar and spinor one-loop QED. A modification of the sum
rules which deals with the infrared divergences has been published in Refs. [238, 239].

1. Basic Principles

Figure I.2 shows a CS process — an absorption and subsequent emission of a photon by a target.
The particles in the initial and final states are the same, and their initial (final) momenta
are denoted by q(q0) for the photon and p(p0) for the target. The photons can be real, i.e.,
q2 = 0 = q0 2, or virtual. In VCS, the initial photon is virtual and the final photon is real,
�⇤ p ! � p. In VVCS, both photons are virtual.

Im ∝
2

Figure III.1.: Illustration of the optical theorem, relating the imaginary part of the forward Compton
scattering amplitude to the total photoabsorption cross section.

Of special interest is the forward limit, where p = p0 and q = q0. Accordingly, the Mandelstam
invariant t = (q�q0)2 = (p�p0)2 vanishes. In this case, unitarity leads to the optical theorem (see
Ref. [320] for a review of the optical theorem and its modern application in scattering theory).
It expresses the imaginary part of the forward CS amplitude through the total photoabsorption
cross section, as is graphically depicted in Fig. III.1: on the left-hand side (lhs) we have the CS

65
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The 2nd moments appear in the following generalization of the forward spin polarizabilities [61]:

�0(Q 2) =
16↵M2

Q 6

Z x0

0
dx x2 gTT (x,Q 2) =

1
2⇡2

Z
1

0

d⌫
⌫3 �TT (⌫,Q 2), (5.41)

�LT (Q 2) =
16↵M2

Q 6

Z x0

0
dx x2[g1 + g2](x,Q 2) =

1
2⇡2

Z
1

0

d⌫
⌫2Q

�LT (⌫,Q 2), (5.42)

which evidently satisfy the following relations at Q 2 = 0:

�0 = lim
Q 2!0

16↵M2

Q 6

Z x0

0
dx x2 g1(x,Q 2), (5.43)

�LT = �0 + lim
Q 2!0

16↵M2

Q 6

Z x0

0
dx x2 g2 (x,Q 2). (5.44)

The first of these is simply the GTT sum rule given in Eq. (5.24). At large Q 2, where the Wandzura–Wilczek relation [199]
[quoted in Eq. (6.45)] is applicable and the elastic contributions can be neglected, one can show that [61]: �LT (Q 2) =
1
3�0(Q 2).

From the Q 2 term in the expansion of S1, and the ⌫2 term in the expansion of S2, one obtains the following relations
involving the GPs [59]:

↵I 01(0) =
1
12

↵~2
hr2i2 +

1
2
M2�E1M2 �

3
2
↵M3 ⇥

P 0(M1,M1)1(0) + P 0(L1,L1)1(0)
⇤
, (5.45a)

�LT = ��E1E1 + 3↵M
⇥
P 0(M1,M1)1(0) � P 0(L1,L1)1(0)

⇤
. (5.45b)

The momentum derivatives of the GPs are given by:

P 0 (M1,M1)1(0) ± P 0 (L1,L1)1(0) ⌘
d

dq2

h
P (M1,M1)1(q2) ± P (L1,L1)1(q2)

i

q2=0
, (5.46)

with q
2 being the initial photon c.m. three-momentum squared. The superscript indicates the multipolarities, L1(M1)

denoting electric (magnetic) dipole transitions of the initial and final photons, and ‘1’ implies that these transitions involve
the spin-flip of the nucleon, cf. [66,171]. An empirical implication of these relations, in the context of the so-called
‘‘�LT -puzzle’’, is briefly considered in Section 7.

Another combination of the 2nd moments of spin structure functions, i.e.:

d̄2(Q 2) =

Z x0

0
dx x2

⇥
3g2(x,Q 2) + 2g1(x,Q 2)

⇤
, (5.47)

is of interest in connection to the concept of color polarizability [200]. In terms of the above-introduced quantities it reads:

d̄2(Q 2) =
Q 4

8M4

⇢
M2Q 2

↵
�LT (Q 2) +

⇥
I1(Q 2) � IA(Q 2)

⇤�
, (5.48)

and goes as Q 6 for low Q .

5.6. Empirical evaluations of sum rules

Recall that the forward RCS is described by two scalar amplitudes, denoted here [and in Eq. (4.10a)] as:

f (⌫) ⌘
T1(⌫, 0)

4⇡
=

p
s

2M
�
�1 + �5

���
✓=0, g(⌫) ⌘

⌫S1(⌫, 0)
4⇡M

=

p
s

2M
�
�1 � �5

���
✓=0, (5.49)

where the helicity amplitudes �i are introduced in Section 3.2. The corresponding DRs, Eqs. (5.16) and (5.20), read then as
follows:

f (⌫) = �
Z 2↵

M
+

⌫2

2⇡2

Z
1

0
d⌫ 0

�T (⌫
0)

⌫ 0 2 � ⌫2 � i0+
, (5.50a)

g(⌫) =
⌫

2⇡2

Z
1

0
d⌫ 0

⌫ 0�TT (⌫
0)

⌫ 0 2 � ⌫2 � i0+
. (5.50b)

Therefore, given the total unpolarized cross section �T and the helicity-difference cross-section �TT , the forward CS can be
completely determined. The cross sections for the proton are fairly well known. Their most recent fits and the evaluation
of the integrals are performed by Gryniuk et al. [60]. The corresponding results for the amplitudes are displayed in Figs. 5.3

Spin-independent amplitude

Spin-dependent amplitude
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The 2nd moments appear in the following generalization of the forward spin polarizabilities [61]:
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which evidently satisfy the following relations at Q 2 = 0:

�0 = lim
Q 2!0
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dx x2 g1(x,Q 2), (5.43)

�LT = �0 + lim
Q 2!0
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dx x2 g2 (x,Q 2). (5.44)

The first of these is simply the GTT sum rule given in Eq. (5.24). At large Q 2, where the Wandzura–Wilczek relation [199]
[quoted in Eq. (6.45)] is applicable and the elastic contributions can be neglected, one can show that [61]: �LT (Q 2) =
1
3�0(Q 2).

From the Q 2 term in the expansion of S1, and the ⌫2 term in the expansion of S2, one obtains the following relations
involving the GPs [59]:
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�LT = ��E1E1 + 3↵M
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P 0(M1,M1)1(0) � P 0(L1,L1)1(0)
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. (5.45b)

The momentum derivatives of the GPs are given by:

P 0 (M1,M1)1(0) ± P 0 (L1,L1)1(0) ⌘
d

dq2

h
P (M1,M1)1(q2) ± P (L1,L1)1(q2)

i

q2=0
, (5.46)

with q
2 being the initial photon c.m. three-momentum squared. The superscript indicates the multipolarities, L1(M1)

denoting electric (magnetic) dipole transitions of the initial and final photons, and ‘1’ implies that these transitions involve
the spin-flip of the nucleon, cf. [66,171]. An empirical implication of these relations, in the context of the so-called
‘‘�LT -puzzle’’, is briefly considered in Section 7.

Another combination of the 2nd moments of spin structure functions, i.e.:

d̄2(Q 2) =

Z x0

0
dx x2

⇥
3g2(x,Q 2) + 2g1(x,Q 2)

⇤
, (5.47)

is of interest in connection to the concept of color polarizability [200]. In terms of the above-introduced quantities it reads:
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M2Q 2
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and goes as Q 6 for low Q .

5.6. Empirical evaluations of sum rules

Recall that the forward RCS is described by two scalar amplitudes, denoted here [and in Eq. (4.10a)] as:
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where the helicity amplitudes �i are introduced in Section 3.2. The corresponding DRs, Eqs. (5.16) and (5.20), read then as
follows:

f (⌫) = �
Z 2↵

M
+

⌫2

2⇡2

Z
1

0
d⌫ 0

�T (⌫
0)
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, (5.50a)

g(⌫) =
⌫

2⇡2

Z
1

0
d⌫ 0

⌫ 0�TT (⌫
0)

⌫ 0 2 � ⌫2 � i0+
. (5.50b)

Therefore, given the total unpolarized cross section �T and the helicity-difference cross-section �TT , the forward CS can be
completely determined. The cross sections for the proton are fairly well known. Their most recent fits and the evaluation
of the integrals are performed by Gryniuk et al. [60]. The corresponding results for the amplitudes are displayed in Figs. 5.3

Spin-independent amplitude

Spin-dependent amplitude

Forward spin polarizability sum rule: γ0 =
1

2π2 ∫
∞

0
dν

σTT(ν)
ν3

,

= − γE1E1 − γE1M2 − γM1M1 − γM1E24

TABLE II. Empirical evaluations of the GDH and FSP integrals.

IGDH �0 �̄0
(µb) (10�6 fm4) (10�6 fm6)

GDH & A2 [9, 11] ⇡ 212 ⇡ �86

Helbing [21] 212± 6± 12

Bianchi-Thomas [24] 207± 23

Pasquini et al. [12] 210± 6± 14 �90± 8± 11 60± 7± 7

This work 204.5± 21.4 �92.9± 10.5 48.4± 8.2

GDH sum rule 204.784481(4)a

B�PT [15] �90± 140 110± 50

HB�PT [17] �260± 190

a Right-hand side of Eq. (7) with CODATA [19] values of proton M and .

We note that the main contribution to the estimated uncer-
tainty of the GDH integral comes from the high-energy Regge
behavior, which is possibly both due to the fact that parame-
ters seem to be not well “fixed” and because we have used a
simplified covariance matrix estimation for these parameters.
As for the higher-order sum rules, it appears that the main con-
tribution to the uncertainty comes from our assumption about
the systematic uncertainty of the partial-wave analyses (low-
energy region).

TABLE III. Contributions to the GDH and FSP integrals by regions.

Sum Rule
Region low-energy medium-energy high-energy

IGDH (µb) 43.6± 6.0 175.7± 3.7 �14.8± 19.9

�0 (10�6 fm4) 3.6± 10.3 �96.5± 2.0 (2± 7)⇥ 10�2

�̄0 (10�6 fm6) 77.1± 8.2 �28.7± 0.6 (2± 36)⇥ 10�5

FIG. 2. The GDH and FSP integrals as a function of the upper inte-
gration bound. Bands represent estimated errors. Asymptotic values
of the integrals are displayed on the right and marked with colored
triangles.

We next evaluate the entire spin-dependent amplitude g(⌫).
In order to improve on the accuracy, we use the subtracted

dispersion relation:

Re g(⌫) = � ↵
2

2M2
⌫ � ⌫

3

4⇡2

 1

⌫0

d⌫
0 ��abs(⌫0)

(⌫0 2 � ⌫2) ⌫0 . (12)

The only difference with the unsubtracted one, Eq. (6), is ac-
curacy. Indeed, the subtraction replaces the value of the GDH
integral (see “This work” in Table II) by the much more accu-
rate GDH sum rule value (next row) and leads to the smaller
uncertainty.

The remaining integral in Eq. (12) converges very fast in the
considered energy range. The resulting amplitude is plotted in
Fig. 3. The upper panel shows the real and imaginary parts in
the energy range where the data (for the imaginary part) are
available.

The lower panel of Fig. 3 zooms into the lower energy range
where our results can be compared with next-next-to-leading
order �PT calculations of Lensky et al. [15]. One notes here
that the imaginary parts differ appreciably at energies around
0.25 GeV. Nevertheless, their integrals (i.e., the real parts)
agree perfectly at low ⌫. This is a “scientific miracle” of the
effective field theory — the low-energy quantities are well de-
scribed, even though they are obtained as loop or dispersive
integrals which include higher-energy domains where the the-
ory is inapplicable.

FIG. 3. Spin-dependent amplitude g(⌫) obtained from numerical in-
tegration of the fit of data for the helicity-difference photoproduction
cross section. Dashed and dotted curves in the bottom panel are the
B�PT predictions of Ref. [15]. Bands represent the error estimate.

V. OBSERVABLES

Given both amplitudes, f(⌫) and g(⌫), one can reconstruct
the energy dependence of the forward CS observables. The
differential cross section of the forward CS in the laboratory

𝒪(ν) 𝒪(ν3) 𝒪(ν5)
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which evidently satisfy the following relations at Q 2 = 0:
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The first of these is simply the GTT sum rule given in Eq. (5.24). At large Q 2, where the Wandzura–Wilczek relation [199]
[quoted in Eq. (6.45)] is applicable and the elastic contributions can be neglected, one can show that [61]: �LT (Q 2) =
1
3�0(Q 2).

From the Q 2 term in the expansion of S1, and the ⌫2 term in the expansion of S2, one obtains the following relations
involving the GPs [59]:
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The momentum derivatives of the GPs are given by:
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with q
2 being the initial photon c.m. three-momentum squared. The superscript indicates the multipolarities, L1(M1)

denoting electric (magnetic) dipole transitions of the initial and final photons, and ‘1’ implies that these transitions involve
the spin-flip of the nucleon, cf. [66,171]. An empirical implication of these relations, in the context of the so-called
‘‘�LT -puzzle’’, is briefly considered in Section 7.

Another combination of the 2nd moments of spin structure functions, i.e.:
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is of interest in connection to the concept of color polarizability [200]. In terms of the above-introduced quantities it reads:
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and goes as Q 6 for low Q .

5.6. Empirical evaluations of sum rules

Recall that the forward RCS is described by two scalar amplitudes, denoted here [and in Eq. (4.10a)] as:
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where the helicity amplitudes �i are introduced in Section 3.2. The corresponding DRs, Eqs. (5.16) and (5.20), read then as
follows:
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Therefore, given the total unpolarized cross section �T and the helicity-difference cross-section �TT , the forward CS can be
completely determined. The cross sections for the proton are fairly well known. Their most recent fits and the evaluation
of the integrals are performed by Gryniuk et al. [60]. The corresponding results for the amplitudes are displayed in Figs. 5.3

Spin-independent amplitude

Spin-dependent amplitude

F. Hagelstein et al. / Progress in Particle and Nuclear Physics 88 (2016) 29–97 83

Fig. 7.1. Left panel: sum of the electric and magnetic dipole polarizabilities of the proton. Right panel: the magnetic dipole polarizability of the proton.
The orange band is the weighted average over the Baldin sum rule evaluations listed in Table 5.1. The DR prediction for �

(p)
M1 can be found in the review

of Schumacher [62]. ‘‘Lensky–Pascalutsa ’15’’ refers to Ref. [34,125], whereas ‘‘Lensky et al. ’15’’ refers to Ref. [54]. All other references and declarations are
given in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7.2. Left panel: sum of the electric and magnetic dipole polarizabilities of the neutron. Right panel: the magnetic dipole polarizability of the neutron.
The orange band is the weighted average over the Baldin sum rule evaluations listed in Table 5.1. The experimental results for �

(n)
M1 are from Refs. [292,293]

and [62]. Other references are given in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

7. Summary plots and conclusions

To summarize and conclude we have compiled the following summary plots surveying the recent results for nucleon
polarizabilities and for their contribution to the 2S-levels of muonic hydrogen.

7.1. Scalar polarizabilities

Figs. 7.1 and 7.2 present the situation for ↵E1 + �M1 and �M1 of the proton and neutron, respectively. In the top of the
left panels we have the results of the Baldin sum-rule evaluations considered in Table 5.1. The orange band indicates the
weighted-average of these evaluations.

It appears that there is a substantial tension in the value of the proton magnetic polarizability, cf. the right panel of
Fig. 7.1. An emerging objective in this area is to reduce the uncertainty on�

(p)
M1 by approximately 50% through ameasurement

technique that is ideally independent of the Baldin sum rule. The utilization of photon beams with high intensity and high
linear polarizationwill be a key part of these investigations. Exploratorymeasurements are currently underway at HIGS and
Mainz.

In the area of the neutron scalar polarizabilities, the recent Lund publication [15] of elastic CS on the deuteron is an
important milestone. For the first time, relatively high statistics and wide kinematic coverage elastic data are available, and
the data are analyzable with state-of-the-art effective-field theory calculations.With the unfortunate discontinuation of the
CS program at Lund, the focus will now likely shift to other labs and different nuclear targets. At Mainz an experiment to
measure elastic CS on 4He is in preparation.

Another graphical representation of the experimental and theoretical results for the dipole polarizabilities, ↵E1 and �M1,
is shown in Fig. 7.3. The orange band again represents the constraint by the Baldin sum rule. The light green bands show
experimental constraints on the difference of dipole polarizabilities, i.e., ↵E1 � �M1, cf. Kossert et al. [292,293] and Zieger
et al. [16]. For the proton, other experimental constraints are shownbyblack lines: Federspiel et al. [10],MacGibbon et al. [12]

αE1 + βM1 =
1

2π2 ∫
∞

0
dν

σT(ν)
ν2 Forward spin polarizability sum rule: γ0 =

1
2π2 ∫

∞

0
dν

σTT(ν)
ν3

,

= − γE1E1 − γE1M2 − γM1M1 − γM1E24

TABLE II. Empirical evaluations of the GDH and FSP integrals.

IGDH �0 �̄0
(µb) (10�6 fm4) (10�6 fm6)

GDH & A2 [9, 11] ⇡ 212 ⇡ �86

Helbing [21] 212± 6± 12

Bianchi-Thomas [24] 207± 23

Pasquini et al. [12] 210± 6± 14 �90± 8± 11 60± 7± 7

This work 204.5± 21.4 �92.9± 10.5 48.4± 8.2

GDH sum rule 204.784481(4)a

B�PT [15] �90± 140 110± 50

HB�PT [17] �260± 190

a Right-hand side of Eq. (7) with CODATA [19] values of proton M and .

We note that the main contribution to the estimated uncer-
tainty of the GDH integral comes from the high-energy Regge
behavior, which is possibly both due to the fact that parame-
ters seem to be not well “fixed” and because we have used a
simplified covariance matrix estimation for these parameters.
As for the higher-order sum rules, it appears that the main con-
tribution to the uncertainty comes from our assumption about
the systematic uncertainty of the partial-wave analyses (low-
energy region).

TABLE III. Contributions to the GDH and FSP integrals by regions.

Sum Rule
Region low-energy medium-energy high-energy

IGDH (µb) 43.6± 6.0 175.7± 3.7 �14.8± 19.9

�0 (10�6 fm4) 3.6± 10.3 �96.5± 2.0 (2± 7)⇥ 10�2

�̄0 (10�6 fm6) 77.1± 8.2 �28.7± 0.6 (2± 36)⇥ 10�5

FIG. 2. The GDH and FSP integrals as a function of the upper inte-
gration bound. Bands represent estimated errors. Asymptotic values
of the integrals are displayed on the right and marked with colored
triangles.

We next evaluate the entire spin-dependent amplitude g(⌫).
In order to improve on the accuracy, we use the subtracted

dispersion relation:

Re g(⌫) = � ↵
2

2M2
⌫ � ⌫

3

4⇡2

 1

⌫0

d⌫
0 ��abs(⌫0)

(⌫0 2 � ⌫2) ⌫0 . (12)

The only difference with the unsubtracted one, Eq. (6), is ac-
curacy. Indeed, the subtraction replaces the value of the GDH
integral (see “This work” in Table II) by the much more accu-
rate GDH sum rule value (next row) and leads to the smaller
uncertainty.

The remaining integral in Eq. (12) converges very fast in the
considered energy range. The resulting amplitude is plotted in
Fig. 3. The upper panel shows the real and imaginary parts in
the energy range where the data (for the imaginary part) are
available.

The lower panel of Fig. 3 zooms into the lower energy range
where our results can be compared with next-next-to-leading
order �PT calculations of Lensky et al. [15]. One notes here
that the imaginary parts differ appreciably at energies around
0.25 GeV. Nevertheless, their integrals (i.e., the real parts)
agree perfectly at low ⌫. This is a “scientific miracle” of the
effective field theory — the low-energy quantities are well de-
scribed, even though they are obtained as loop or dispersive
integrals which include higher-energy domains where the the-
ory is inapplicable.

FIG. 3. Spin-dependent amplitude g(⌫) obtained from numerical in-
tegration of the fit of data for the helicity-difference photoproduction
cross section. Dashed and dotted curves in the bottom panel are the
B�PT predictions of Ref. [15]. Bands represent the error estimate.

V. OBSERVABLES

Given both amplitudes, f(⌫) and g(⌫), one can reconstruct
the energy dependence of the forward CS observables. The
differential cross section of the forward CS in the laboratory

𝒪(ν) 𝒪(ν3) 𝒪(ν5)
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•   multipoles determined through low-energy expansion in the following model-independent form:


•   multipoles are small and will be either neglected or taken from ChPT

l = 1

l = 2

2

| {z }
Born

| {z }
non-Born

= + ++

FIG. 1: Mechanisms contributing to real CS: Born and non-Born terms.

initial (final) nucleon, admits a partial-wave expansion:

Ts 0l 0,sl =
•

Â
J=1/2

(2J+1)T
J

s 0l 0,sl (w)d
J

s 0�l 0,s�l (q), (1)

with J the total angular momentum of the photon-proton sys-
tem, T

J

s 0l 0,sl (w) the partial-wave amplitudes, d
J

l 0,l (q) the
Wigner d-function, w and q the photon energy and scatter-
ing angle in the center-of-mass frame; s, t, u are Mandelstam
invariants.

The partial-wave amplitudes T
J(w) are then linearly re-

lated to the amplitudes with definite parity and angu-
lar momentum l, i.e., multipoles f

l±
rr 0(w), with r,r 0 =

E(lectric), or M(agnetic). The infinite sum over half-integer J

is then replaced by the sum over integer l = J⌥1/2. Note that
f

0+
rr 0 = 0, by definition; hence the summation starts at l = 1.

In this work, we first write the amplitude as the sum of
the Born, T

Born, and the rest (non-Born) T̄ , as illustrated in
Fig. 1 (note that here the p0-pole contribution is part of the
Born term). The same decomposition holds for the multipoles:
f = f

Born + f̄ . We then truncate the multipole expansion of
the non-Born amplitude at J = 3/2, whereas the Born ampli-

tude is treated exactly. We thus retain the ten lowest non-Born
multipoles,

f̄ =
�

f̄
1+
EE

, f̄
1�
EE

, f̄
1+
MM

, f̄
1�
MM

, f̄
1+
EM

, f̄
1+
ME

, f̄
2+
EE

, f̄
2�
EE

, f̄
2+
MM

, f̄
2�
MM

�
,

(2)
the rest are neglected. This approximation is well justified at
energies below the pion production threshold (w . mp ), as
the leading low-energy behavior of the non-Born multipoles
is [25]

f̄
l±
EE

⇠ f̄
l±
MM

⇠ w2l , f̄
l+
EM

⇠ f̄
l+
ME

⇠ w2l+1 . (3)

Furthermore, the existing cPT calculations [13, 14, 19] show
that the four l = 2 non-Born multipoles, f̄

2+
EE

, f̄
2�
EE

, f̄
2+
MM

, f̄
2�
MM

,
give tiny contributions below the pion threshold. In what fol-
lows we will either neglect them, or fix them to the values
given by the latest BcPT calculation [14]. We shall therefore
fit only the six l = 1 non-Born multipoles.

In order to build in the low-energy behavior of the non-Born
multipoles [cf. Eq. (3)], we assume the following parametriza-
tion of the l = 1 multipoles in terms of static polarizabilities:

f̄
1+
EE

(Eg) = E
2
g

Mp
s

"
aE1

3
+

Eg
3

✓
�aE1 +bM1

M
+ gE1E1

◆
+

✓
Eg
M

◆2
f

R

1 (Eg)

#
,
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1�
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(Eg) = E
2
g

Mp
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"
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3
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Eg
3

✓
�aE1 +bM1

M
�2gE1E1

◆
+

✓
Eg
M

◆2
f

R

2 (Eg)

#
,

f̄
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MM

(Eg) = E
2
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Mp
s

"
bM1

3
+

Eg
3

✓
�bM1 +aE1

M
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◆
+
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#
, (4)
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#
,

where we changed the photon energy from the center-of-mass
w to the lab frame Eg = w

p
s/M. The first term in each

of the square brackets of Eq. (4) is given by one of the six
static polarizabilities, four of which, denoted by g’s, are spin-
dependent. The 2nd terms are the recoil corrections (see, e.g.,
Ref. [14]). The 3rd terms are given by the “residual func-
tions” f

R

i
. The parametrization of Eq. (4) ensures the correct

low-energy behavior of these multipoles. It does not imply
any approximation: the six static polarizabilities as well as

the residual functions are free parameters, which will next be
determined from experimental data.

A. Bilinear relations: observables

Any CS observable provides bi-linear relations on CS mul-
tipoles. This is of course the usual situation for any PWA, an
experimental observable, such as cross section or asymmetry,

  = residual functions parametrised by 

polynomials in photon energy  

fR
i

Eγ

After including the forward constraints we fit 
4 polarizabilities and 4 residual functions. 
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PWA of RCS Below Threshold
Updates and improvements

• Updated world data base including A2@MAMI and HIGS


• Old world data: 138 data points (w/o pilot   data)


• A2: 60   and 36   data points


• HIGS: 8   and 3   data points


• Fit of 15 experiments including normalization errors


• Markov Chain Monte Carlo [emcee astro-ph.IM/1202.3665]

Σ3

dσ Σ3

dσ Σ3
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Low-energy Compton scattering off the proton is used as an experimental tool for determination 
of the proton polarizabilities. However, the present empirical determinations rely heavily on the 
theoretical description(s) of the experimental cross sections in terms of polarizabilities. The state-
of-art determinations are based on either the fixed-t dispersion relations (DR) or chiral perturbation 
theory in the single-baryon sector (χPT). The two approaches obtain rather different results for proton 
polarizabilities, most notably for βM1 (magnetic dipole polarizability). We attempt to resolve this 
discrepancy by performing a partial-wave analysis of the world data on proton Compton scattering 
below threshold. We find a large sensitivity of the extraction to a few “outliers”, leading us to conclude 
that the difference between DR and χPT extraction is a problem of the experimental database rather 
than of “model-dependence”. We have specific suggestions for new experiments needed for an efficient 
improvement of the database. With the present database, the difference of proton scalar polarizabilities 
is constrained to a rather broad interval: αE1 − βM1 = (6.8 . . . 10.9) × 10−4 fm3, with their sum fixed 
much more precisely [to 14.0(2)] by the Baldin sum rule.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The low-energy Compton scattering (CS) off the proton and 
light nuclei is the standard tool for probing the nucleon polariz-
abilities, see [1–5] for reviews. However, the relation between the 
experimental observables and polarizabilities is simple only when 
neglecting the higher-order terms in the low-energy expansion 
(LEX) of Compton amplitudes. In practice, the higher-order terms 
play an important role, and, for a quantitative extraction of polariz-
abilities from Compton scattering data, more sophisticated theoret-
ical frameworks are being used. In the case of the proton, there are 
two types of “state-of-the-art” extractions: (i) based on the fixed-t
dispersion relations (DR) [1,2,6–9] and (ii) based on chiral pertur-
bation theory (χPT) with explicit nucleons and Delta’s. The latter 
calculations can be divided into two types: heavy-baryon (HBχPT) 
[10–12] or manifestly-covariant (BχPT) [13,14]. The problem is 
that, although both DR and χPT give comparably good description 
of the experimental cross sections, the extracted values of polariz-
abilities differ, sometimes by a few standard deviations.

* Corresponding author.
E-mail address: vladipas @kph .uni -mainz .de (V. Pascalutsa).

A notable example is provided by the magnetic dipole polariz-
ability βM1 of the proton, which ranges from 1.6(4) [in units of 
10−4 fm3, omitted in what follows] obtained in the state-of-art DR 
fits of the data [2,9,15] to 3.2(5) in the χPT fits [3,12,16]. Further-
more, without using the Compton data, the BχPT at NNLO yields 
for the proton [13,14]: βM1 = 3.9(7), making the discrepancy with 
DR more acute. Incidentally, the current PDG average [17] is basi-
cally combining the DR and HBχPT values, resulting in 2.5(4) for 
the proton βM1. Their central value may serve as a compromise, 
but the uncertainty does not seem to reflect the spread between 
the DR and χPT values.

The present work is an attempt to resolve this tension in a 
model-independent manner, by making the partial-wave analysis 
(PWA) of the CS data below the pion photoproduction threshold 
(! 150 MeV). To our surprise, we find that the above discrep-
ancy between DR and χPT fits is a problem of the experimental 
database, rather than of theoretical descriptions. As such, it calls 
for new experiments. We argue that new precision data for the 
proton CS angular distribution at backward angles and beam en-
ergy around 100 MeV are highly desirable.

The PWA is of course a good old method to study the hadronic 
processes at low energy. Yet, it has barely been used in proton CS 

https://doi.org/10.1016/j.physletb.2018.04.066
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

Mainz (2018)
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Fit of World Data
  distributionχ2
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Summary and Conclusions
PWA of RCS

• Proton polarizabilities related to 2ɣ-exchange in scattering / structure corrections in μH   


• In the past: tensions between ChPT and fixed-t DR extractions of polarizabilities 


‣ Model-independent ansatz needed


• Mainz Partial-Wave-Analysis of RCS: 


‣ No resonances below the pion threshold


‣ Multipoles are real


‣ Forward-scattering is determined via the sum rules (photo absorption cross sections)


• New precise data from A2 and HIGS:


‣ Preliminary PWA of new world data leads to increased value of   as compared to Mainz PWA ’18


‣ Preliminary PWA of A2 data shows trend towards a larger magnetic polarizability, similar to  


• Analysis in progress

γM1M1

βBChPT
M1 = 3.9(7) × 10−4 fm3
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