Proton scalar and spin polarisabilities from Compton scattering data

Timon Esser in collaboration with Franziska Hagelstein, Vadim Lensky and Vladimir Pascalutsa (JGU)

Chiral Dynamics 2024, Ruhr-Universität Bochum

Noether Programm

Electromagnetic Polarizabilities Proton is 1000 times "stiffer" than naïve expectation

Electric dipole polarizability:

 $\vec{P} = \alpha_{E1} \,\vec{E}$

induced electric dipole polarization (linear dielectric)

Electromagnetic Polarizabilities Proton is 1000 times "stiffer" than naïve expectation

Electric dipole polarizability:

 $\vec{P} = \alpha_{E1} \, \vec{E}$

induced electric dipole polarization (linear dielectric) quantum atom: $\alpha_{E1} \sim 5V$ proton: $\alpha_{E1} \sim 10^{-3} \, \mathrm{fm}^3$

Jer" than naïve expectation

Electric dipole polarizability:

 $\vec{P} = \alpha_{E1} \,\vec{E}$

induced electric dipole polarization (linear dielectric) quantum atom: $\alpha_{E1} \sim 5V$ proton: $\alpha_{E1} \sim 10^{-3} \, {\rm fm}^3$

Magnetic dipole polarizability:

 $\vec{P} = \beta_{M1} \vec{H}$

for polarization induced by magnetic field

Jer" than naïve expectation

Electric dipole polarizability:

 $\vec{P} = \alpha_{E1} \, \vec{E}$

induced electric dipole polarization (linear dielectric) quantum atom: $\alpha_{E1} \sim 5V$ proton: $\alpha_{E1} \sim 10^{-3} \, {\rm fm}^3$

Magnetic dipole polarizability:

 $\vec{P} = \beta_{M1} \vec{H}$

for polarization induced by magnetic field

diamagnetic: $\beta_{M1} < 0$ paramagnetic: $\beta_{M1} > 0$

Proton Magnetic Dipole Polarizability Dia- or paramagnetic ? $\beta_{M1} < 0 \text{ or } \beta_{M1} > 0$

Timon Esser (JGU Mainz)

Proton Magnetic Dipole Polarizability Dia- or paramagnetic ? $\beta_{M1} < 0 \text{ or } \beta_{M1} > 0$

 β_{M1} (ChPT) = 3.9(0.7) × 10⁻⁴ fm³ β_{M1} (DR) = 2.4(0.6) × 10⁻⁴ fm³ β_{M1} (MAMI) = 3.14(0.51) × 10⁻⁴ fm³ β_{M1} (HIGS) = 0.2(1.2) × 10⁻⁴ fm³

Eur. Phys. J. C75 (2015) 604 Phys. Rev. Lett. 129 (2022) 10, 102501 Phys. Rev. Lett. 128 (2022) 13, 132502 Phys. Rev. Lett. 128 (2022) 13, 132503

Timon Esser (JGU Mainz)

Proton Magnetic Dipole Polarizability Relevant input in atomic spectroscopy

- Extractions of β_{M1} have varied in the past
- Relevant input for proton structure corrections in μ H, in particular, for subtraction function contribution [V. Biloshytskyi on Thu.]

Timon Esser (JGU Mainz)

Proton Magnetic Dipole Polarizability Relevant input in atomic spectroscopy

- Extractions of β_{M1} have varied in the past
- Relevant input for proton structure corrections in μ H, in particular, for subtraction function contribution [V. Biloshytskyi on Thu.]
- Our Aim: Model-independent extraction \bullet of polarizabilities through **partial wave** analysis

Timon Esser (JGU Mainz)

Compton Scattering Low-energy expansion in terms of polarizabilities

- Low-energy (low-momentum) nucleon structure is encoded in low-energy constants (polarisabilities etc.) that parameterise the Compton scattering (CS) amplitude
- Different kinematical regimes:
 - Real CS (RCS): $q^2 = q'^2 = 0$
 - forward limit: q = q', p = p'
 - Virtual CS (VCS) [see N. Sparveris on Wed.]
 - Forward doubly-virtual CS

[see F. Hagelstein, D. Ruth on Fri.]

Timon Esser (JGU Mainz)

Compton Scattering Low-energy expansion in terms of polarizabilities

- Non-Born RCS \rightarrow polarizabilities (dipole, spin, ...)

Chiral Dynamics 2024, Bochum

• Born RCS is well known \rightarrow mass, charge, anomalous magnetic moment and t-channel pion pole

$$\frac{\mathrm{d}\sigma^{(\mathrm{NB})}}{\mathrm{d}\Omega} = -\frac{\alpha}{M} \left(\frac{\nu'}{\nu}\right)^{-} \nu\nu' \left[\alpha_{E1}(1+\cos^2\theta) + 2\beta_{M1}\cos\theta\right] + \mathcal{O}(\nu^4)$$

Timon Esser (JGU Mainz)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

 $T_{\sigma'\lambda',\sigma\lambda} = \sum_{J=1/2}^{\infty} (2J+1) T_{\sigma'\lambda',\sigma\lambda}^{J}(\boldsymbol{\omega}) d_{\sigma'-\lambda',\sigma-\lambda}^{J}(\boldsymbol{\theta})$

7

$$\Phi_{1} = \frac{1}{8\pi\sqrt{s}} T_{\frac{1}{2},\frac{1}{2}}, \quad \Phi_{2} = \frac{1}{8\pi\sqrt{s}} T_{-\frac{1}{2},\frac{1}{2}}, \quad \Phi_{3} = \frac{1}{8\pi\sqrt{s}} T_{-\frac{3}{2},\frac{1}{2}}, \quad T_{\sigma'\lambda',\sigma\lambda} = \Phi_{4} = \frac{1}{8\pi\sqrt{s}} T_{\frac{3}{2},\frac{1}{2}}, \quad \Phi_{5} = \frac{1}{8\pi\sqrt{s}} T_{\frac{3}{2},\frac{3}{2}}, \quad \Phi_{6} = \frac{1}{8\pi\sqrt{s}} T_{-\frac{3}{2},\frac{3}{2}}, \quad T_{\sigma'\lambda',\sigma\lambda} = D_{1}$$

Helícíty amplitudes

 $\sum_{J=1/2}^{\infty} (2J+1) T^{J}_{\sigma'\lambda',\sigma\lambda}(\boldsymbol{\omega}) d^{J}_{\sigma'-\lambda',\sigma-\lambda}(\boldsymbol{\theta})$

Timon Esser (JGU Mainz)

7

$$\Phi_{1} = \frac{1}{8\pi\sqrt{s}}T_{\frac{1}{2},\frac{1}{2}}, \quad \Phi_{2} = \frac{1}{8\pi\sqrt{s}}T_{-\frac{1}{2},\frac{1}{2}}, \quad \Phi_{3} = \frac{1}{8\pi\sqrt{s}}T_{-\frac{3}{2},\frac{1}{2}}, \quad T_{\sigma'\lambda',\sigma\lambda} = \sum_{J=1/2}^{\infty} (\Phi_{4} = \frac{1}{8\pi\sqrt{s}}T_{\frac{3}{2},\frac{1}{2}}, \quad \Phi_{5} = \frac{1}{8\pi\sqrt{s}}T_{\frac{3}{2},\frac{3}{2}}, \quad \Phi_{6} = \frac{1}{8\pi\sqrt{s}}T_{-\frac{3}{2},\frac{3}{2}}, \quad T_{\sigma'\lambda',\sigma\lambda} = \sum_{J=1/2}^{\infty} (\Phi_{4} = \frac{1}{8\pi\sqrt{s}}T_{\frac{3}{2},\frac{1}{2}}, \quad \Phi_{5} = \frac{1}{8\pi\sqrt{s}}T_{\frac{3}{2},\frac{3}{2}}, \quad \Phi_{6} = \frac{1}{8\pi\sqrt{s}}T_{-\frac{3}{2},\frac{3}{2}}, \quad \Phi_{6} = \frac{1$$

$$\begin{split} \varPhi_{\frac{1}{2}}^{J} &= \frac{1}{4} \{ (J+3/2)^2 f_{EE\pm MM}^{(J+1/2)-} \pm (J-1/2)^2 f_{EE\pm MM}^{(J-1/2)+} \mp 2(J+3/2)(J-1/2) f_{EM\pm ME}^{(J-1/2)+} \} \\ \varPhi_{\frac{3}{4}}^{J} &= \frac{1}{4} \sqrt{(J+3/2)(J-1/2)} \{ (J+3/2) f_{EE\mp MM}^{(J+1/2)-} \pm (J-1/2) f_{EE\mp MM}^{(J-1/2)+} \mp 2 f_{EM\mp ME}^{(J-1/2)+} \} \\ \varPhi_{\frac{5}{6}}^{J} &= \frac{1}{4} (J+3/2)(J-1/2) \{ f_{EE\pm MM}^{(J+1/2)-} \pm f_{EE\pm MM}^{(J-1/2)+} \pm 2 f_{EM\pm ME}^{(J-1/2)+} \} \end{split}$$

Multipole amplitudes $f^{l\pm}_{
ho
ho'}(oldsymbol{\omega})$ ρ and l define the photon multipolarity with $\rho, \rho' = E$, or M and $l = J \pm 1/2$

the total angular momentum of the initial photon

mon Esser (JGU Mainz)

$$\begin{split} \Phi_{1} &= \frac{1}{8\pi\sqrt{s}}T_{\frac{1}{2},\frac{1}{2}}, \quad \Phi_{2} = \frac{1}{8\pi\sqrt{s}}T_{-\frac{1}{2},\frac{1}{2}}, \quad \Phi_{3} = \frac{1}{8\pi\sqrt{s}}T_{-\frac{3}{2},\frac{1}{2}}, \\ \Phi_{4} &= \frac{1}{8\pi\sqrt{s}}T_{\frac{3}{2},\frac{1}{2}}, \quad \Phi_{5} = \frac{1}{8\pi\sqrt{s}}T_{\frac{3}{2},\frac{3}{2}}, \quad 1 \quad \dots \\ \Phi_{1}^{J} &= \frac{1}{4}\left\{(J+3/2)^{2}f_{EE\pm MM}^{(J+1/2)-} \pm (J-2)\right\}, \\ \Phi_{3}^{J} &= \frac{1}{4}\sqrt{(J+3/2)(J-1/2)}\left\{(J+3/2)\right\}, \\ \Phi_{5}^{J} &= \frac{1}{4}(J+3/2)(J-1/2)\left\{f_{EE\pm MM}^{(J+1/2)-} + (J-2)\right\}, \\ \Phi_{5}^{J} &= \frac{1}{4}(J+3/2)(J-1/2)\left\{f_{EE\pm MM}^{(J+1/2)-} + (J-2)\left\{f_{EE\pm M$$

 $\bar{f} = \left(\bar{f}_{EE}^{1+}, \bar{f}_{EE}^{1-}, \bar{f}_{MM}^{1+}, \bar{f}_{MM}^{1-}, \bar{f}_{EM}^{1+}, \bar{f}_{ME}^{1+}, \bar{f}_{EE}^{2+}, \bar{f}_{EE}^{2-}, \bar{f}_{MM}^{2+}, \bar{f}_{MM}^{2-}\right)$ Multipole expansion of the non-Born part, truncated at J=3/2:

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Observables Bilinear relations

Angular distribution

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{256\pi^2 s} \sum_{\sigma'\lambda'\sigma\lambda} \left| T_{\sigma'\lambda',\sigma\lambda} \right|^2$$

Chiral Dynamics 2024, Bochum

Beam asymmetry $\mathrm{d}\sigma_{||} - \mathrm{d}\sigma_{||}$

$$\Sigma_3 = \frac{\mathrm{d}\sigma_{||} - \mathrm{d}\sigma_{\perp}}{\mathrm{d}\sigma_{||} + \mathrm{d}\sigma_{\perp}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Sigma_3 = \frac{1}{128\pi^2 s} \sum_{\sigma'\lambda'\lambda} \operatorname{Re}(T^*_{\sigma'\lambda',-1\lambda}T_{\sigma'\lambda'})$$

Timon Esser (JGU Mainz)

	_
-	

 $T_{\sigma'\lambda'\sigma\lambda} \stackrel{t=0}{=} \chi^{\dagger}_{\lambda'} \left\{ f(\mathbf{v}) \vec{\varepsilon}^*_{\sigma'} \cdot \vec{\varepsilon}_{\sigma} + g(\mathbf{v}) i(\vec{\varepsilon}^*_{\sigma'} \times \vec{\varepsilon}_{\sigma}) \cdot \vec{\sigma} \right\} \chi_{\lambda}$

Spin-independent f Spin-dependent amplitude amplitude

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

$$T_{\sigma'\lambda'\sigma\lambda} \stackrel{t=0}{=} \chi^{\dagger}_{\lambda'} \left\{ f(\mathbf{v}) \vec{\varepsilon}^*_{\sigma'} \cdot \vec{\varepsilon}_{\sigma} + g(\mathbf{v}) i (\vec{\varepsilon}^*_{\sigma'} \times \vec{\varepsilon}_{\sigma}) \cdot \vec{\sigma} \right\} \chi_{\lambda}$$
Spin-independent
amplitude

$$f(\mathbf{v}) = \frac{\sqrt{s}}{2M} \sum_{L=0}^{\infty} (L+1)^2 \left\{ (L+2) \left(f_{EE}^{(L+1)-} + f_{MM}^{(L+1)-} \right) + L \left(f_{EE}^{L+} + f_{MM}^{L+} \right) \right\}$$

$$J < 5/2 = \frac{\sqrt{s}}{M} \left(f_{EE}^{1-} + 2f_{EE}^{1+} + f_{MM}^{1-} + 2f_{MM}^{1+} + 6f_{EE}^{2-} + 9f_{EE}^{2+} + 6f_{MM}^{2-} + 9f_{MM}^{2+} \right)$$

$$\begin{array}{ll} g(\mathbf{v}) &=& \frac{\sqrt{s}}{2M} \sum_{L=0}^{\infty} (L+1) \Big\{ (L+2) \left(f_{EE}^{(L+1)-} + f_{MM}^{(L+1)-} \right) - L \left(f_{EE}^{L+} + f_{MM}^{L+} \right) - 2L (L+2) \left(f_{EM}^{L+} + f_{ME}^{L+} \right) \Big\} \\ & \stackrel{J < 5/2}{=} & \frac{\sqrt{s}}{M} \left(f_{EE}^{1-} - f_{EE}^{1+} - 6f_{EM}^{1+} - 6f_{ME}^{1+} + f_{MM}^{1-} - f_{MM}^{1+} + 3f_{EE}^{2-} - 3f_{EE}^{2+} + 3f_{MM}^{2-} - 3f_{MM}^{2+} \right) \end{array}$$

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

 $-2L(L+2)(f_{EM}^{L+}+f_{ME}^{L+})\}$

 $-3f_{MM}^{2-}-3f_{MM}^{2+}$

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

RCS Sum Rules Empirical evaluation based on photoabsorption cross sections

RCS Sum Rules Empirical evaluation based on photoabsorption cross sections

Forward spin polarizability sum rule:

GDH & A2 Helbing Bianchi-Tho Pasquini *et* This w GDH sun $B\chi$ PT [HB χ PT

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

$$\gamma_0 = \frac{1}{2\pi^2} \int_0^\infty d\nu \frac{\sigma_{TT}(\nu)}{\nu^3},$$
$$= -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1M1} - \gamma$$

(ν^5)
$ar{\gamma_0}$
6 fm^6)
$=7\pm7$
± 8.2
± 50

RCS Sum Rules Empirical evaluation based on photoabsorption cross sections

Forward spin polarizability sum rule:

$$\gamma_0 = \frac{1}{2\pi^2} \int_0^\infty d\nu \frac{\sigma_{TT}(\nu)}{\nu^3},$$
$$= -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1M1} - \gamma$$

$\mathcal{O}(\nu^5)$
γ_{0}
(10^{-6} fm^6)
$1 \left 60 \pm 7 \pm 7 \right $
$5 \mid 48.4 \pm 8.2$
110 ± 50

Timon Esser (JGU Mainz)

Partial-Wave-Analysis Ansatz

$$\begin{split} \bar{f}_{EE}^{1+}(E_{\gamma}) &= E_{\gamma}^{2} \frac{M}{\sqrt{s}} \left[\frac{\alpha_{E1}}{3} + \frac{E_{\gamma}}{3} \left(\frac{-\alpha_{E1} + \beta_{M1}}{M} + \gamma_{E1E1} \right) + \left(\frac{E_{\gamma}}{M} \right)^{2} f \right] \\ \bar{f}_{EE}^{1-}(E_{\gamma}) &= E_{\gamma}^{2} \frac{M}{\sqrt{s}} \left[\frac{\alpha_{E1}}{3} + \frac{E_{\gamma}}{3} \left(\frac{-\alpha_{E1} + \beta_{M1}}{M} - 2\gamma_{E1E1} \right) + \left(\frac{E_{\gamma}}{M} \right)^{2} \right] \\ \bar{f}_{MM}^{1+}(E_{\gamma}) &= E_{\gamma}^{2} \frac{M}{\sqrt{s}} \left[\frac{\beta_{M1}}{3} + \frac{E_{\gamma}}{3} \left(\frac{-\beta_{M1} + \alpha_{E1}}{M} + \gamma_{M1M1} \right) + \left(\frac{E_{\gamma}}{M} \right)^{2} \right] \\ \bar{f}_{MM}^{1-}(E_{\gamma}) &= E_{\gamma}^{2} \frac{M}{\sqrt{s}} \left[\frac{\beta_{M1}}{3} + \frac{E_{\gamma}}{3} \left(\frac{-\beta_{M1} + \alpha_{E1}}{M} - 2\gamma_{M1M1} \right) + \left(\frac{E_{\gamma}}{M} \right)^{2} \right] \\ \bar{f}_{EM}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{E1M2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{E1M2} + 3\gamma_{M1E2} + 3\gamma_{M1M1}}{4M} - \frac{1}{4M} \right) \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right) \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right) \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{1}{4M} \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1M2} + 3\gamma_{E1M2} + \frac{1}{4M} \right] \\ \bar{f}_{ME}^{1+}(E_{\gamma}) &= E_{\gamma}^{3} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1E2}}{6} + \frac{E_{\gamma}}{6} \left(\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1M2} + 3\gamma_{E1M2} + \frac{1}{4M} \right]$$

• l = 2 multipoles are small and will be either **neglected** or taken from **ChPT**

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

26.08.2024

11

PWA of RCS Below Threshold Updates and improvements

- Updated world data base including A2@MAMI and HIGS
 - Old world data: 138 data points (w/o pilot Σ_3 data)
 - A2: 60 d σ and 36 Σ_3 data points
 - HIGS: 8 d σ and 3 Σ_3 data points
- Fit of 15 experiments including normalization errors
- Markov Chain Monte Carlo [emcee astro-ph.IM/1202.3665]

ELSEVIER		
	ELSEVIER	

nysics Letters B 782 (2018) 34-4

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletl

Partial-wave analysis of proton Compton scattering data below the pion-production threshold

Nadiia Krupina^a, Vadim Lensky^{a,b,c}, Vladimir Pascalutsa^{a,*}

Mainz (2018)

Phys. Rev. Lett. 128 (2022) 13, 132502 Phys. Rev. Lett. 128 (2022) 13, 132503

Fit of World Data χ^2 distribution

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/ ext{dof.}$
Literature:							
DR, Mornacchi et al. $(2022)^a$	12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
$B\chi PT$, Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

- b : Errors are given as (statistical)(systematic)(spin polarizability)(model)
- * : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/{ m dof.}$
Literature: DR, Mornacchi et al. $(2022)^a$ B χ PT, Lensky et al. (2015)	12.7(8)(1) 11.2(7)	2.4(6)(1) 3.9(7)	$-3.0(6)(4) \\ -3.3(8)$	3.7(5)(1) 2.9(1.5)	-1.2(1.0)(3) 0.2(2)	2.0(7)(4) 1.1(3)	p-value = 0.24
Fits without $l = 2$ multipoles: New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

- b : Errors are given as (statistical)(systematic)(spin polarizability)(model)
- * : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/ ext{dof.}$
Literature: DR, Mornacchi et al. $(2022)^a$ B χ PT, Lensky et al. (2015)	12.7(8)(1) 11.2(7)	2.4(6)(1) 3.9(7)	$-3.0(6)(4) \\ -3.3(8)$	3.7(5)(1) 2.9(1.5)	-1.2(1.0)(3) 0.2(2)	2.0(7)(4) 1.1(3)	p-value = 0.24
Fits without $l = 2$ multipoles: New world data New world data without HIGS	11.5(3) 11.3(3)	2.5(3) 2.7(3)	$-2.5(9) \\ -2.5(9)$	4.2(4) 4.1(3)	-1.6(1.0) -1.4(1.0)	$0.8(4) \\ 0.7(4)$	$1.21 \\ 1.19$

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

- b : Errors are given as (statistical)(systematic)(spin polarizability)(model)
- * : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	β_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/ ext{dof.}$
Literature:							
DR, Mornacchi et al. $(2022)^a$	12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
${\rm B}\chi{\rm PT},$ Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	
Fits without $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21
New world data without HIGS	11.3(3)	2.7(3)	-2.5(9)	4.1(3)	-1.4(1.0)	0.7(4)	1.19
Old world data	11.5(4)	2.5(4)	-3.0(1.0)	4.1(3)	-0.7(1.0)	0.6(5)	1.47

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

- b : Errors are given as (statistical)(systematic)(spin polarizability)(model)
- * : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/ ext{dof.}$
Literature:							
DR, Mornacchi et al. (2022)	a 12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
$B\chi PT$, Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	-
Fits without $l = 2$ multipoles	s:						
New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21
New world data without HIC	GS 11.3(3)	2.7(3)	-2.5(9)	4.1(3)	-1.4(1.0)	0.7(4)	1.19
Old world data	11.5(4)	2.5(4)	-3.0(1.0)	4.1(3)	-0.7(1.0)	0.6(5)	1.47
Fits with $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.0(1.0)	4.2(3)	-1.8(1.0)	0.5(4)	1.23

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

 b : Errors are given as (statistical)(systematic)(spin polarizability)(model)

* : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/{ m dof.}$
Literature:							
DR, Mornacchi et al. $(2022)^a$	12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
$B\chi PT$, Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	
Fits without $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21
New world data without HIGS	11.3(3)	2.7(3)	-2.5(9)	4.1(3)	-1.4(1.0)	0.7(4)	1.19
Old world data	11.5(4)	2.5(4)	-3.0(1.0)	4.1(3)	-0.7(1.0)	0.6(5)	1.47
Fits with $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.0(1.0)	4.2(3)	-1.8(1.0)	0.5(4)	1.23
Fits without $l = 2$ multipoles:							
A2, σ	9.5(5)	4.5(5)	-1.1(1.1)	3.5(4)	-0.0(1.1)	-1.4(6)	0.93

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

 b : Errors are given as (statistical)(systematic)(spin polarizability)(model)

* : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/{ m dof.}$
Literature:							
DR, Mornacchi et al. $(2022)^a$	12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
$B\chi PT$, Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	
Fits without $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21
New world data without HIGS	11.3(3)	2.7(3)	-2.5(9)	4.1(3)	-1.4(1.0)	0.7(4)	1.19
Old world data	11.5(4)	2.5(4)	-3.0(1.0)	4.1(3)	-0.7(1.0)	0.6(5)	1.47
Fits with $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.0(1.0)	4.2(3)	-1.8(1.0)	0.5(4)	1.23
Fits without $l = 2$ multipoles:							
A2, σ	9.5(5)	4.5(5)	-1.1(1.1)	3.5(4)	-0.0(1.1)	-1.4(6)	0.93
A2, Σ_3	7.8(6)	6.2(6)	1.2(1.6)	-2.1(1.7)	0.1(1.2)	1.8(1.1)	1.04

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a: Errors are given as (fit)(model)

 b : Errors are given as (statistical)(systematic)(spin polarizability)(model)

* : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Chiral Dynamics 2024, Bochum

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/ ext{dof.}$
Literature:							
DR, Mornacchi et al. $(2022)^a$	12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
$B\chi PT$, Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	
Fits without $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21
New world data without HIGS	11.3(3)	2.7(3)	-2.5(9)	4.1(3)	-1.4(1.0)	0.7(4)	1.19
Old world data	11.5(4)	2.5(4)	-3.0(1.0)	4.1(3)	-0.7(1.0)	0.6(5)	1.47
Fits with $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.0(1.0)	4.2(3)	-1.8(1.0)	0.5(4)	1.23
Fits without $l = 2$ multipoles:							
A2, σ	9.5(5)	4.5(5)	-1.1(1.1)	3.5(4)	-0.0(1.1)	-1.4(6)	0.93
A2, Σ_3	7.8(6)	6.2(6)	1.2(1.6)	-2.1(1.7)	0.1(1.2)	1.8(1.1)	1.04
A2, σ and Σ_3	9.5(4)	4.5(4)	-1.0(1.1)	3.5(3)	-0.5(1.1)	-1.1(6)	0.90

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a : Errors are given as (fit)(model)

 b : Errors are given as (statistical)(systematic)(spin polarizability)(model)

* : Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Timon Esser (JGU Mainz)

Name	$lpha_{E1}$	eta_{M1}	γ_{E1E1}	γ_{M1M1}	γ_{E1M2}	γ_{M1E2}	$\chi^2/ ext{dof.}$
Literature:							
DR, Mornacchi et al. $(2022)^a$	12.7(8)(1)	2.4(6)(1)	-3.0(6)(4)	3.7(5)(1)	-1.2(1.0)(3)	2.0(7)(4)	p-value = 0.24
$B\chi PT$, Lensky et al. (2015)	11.2(7)	3.9(7)	-3.3(8)	2.9(1.5)	0.2(2)	1.1(3)	-
Fits without $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.5(9)	4.2(4)	-1.6(1.0)	0.8(4)	1.21
New world data without HIGS	$5\ 11.3(3)$	2.7(3)	-2.5(9)	4.1(3)	-1.4(1.0)	0.7(4)	1.19
Old world data	11.5(4)	2.5(4)	-3.0(1.0)	4.1(3)	-0.7(1.0)	0.6(5)	1.47
Fits with $l = 2$ multipoles:							
New world data	11.5(3)	2.5(3)	-2.0(1.0)	4.2(3)	-1.8(1.0)	0.5(4)	1.23
Fits without $l = 2$ multipoles:							
A2, σ	9.5(5)	4.5(5)	-1.1(1.1)	3.5(4)	-0.0(1.1)	-1.4(6)	0.93
A2, Σ_3	7.8(6)	6.2(6)	1.2(1.6)	-2.1(1.7)	0.1(1.2)	1.8(1.1)	1.04
A2, σ and Σ_3	9.5(4)	4.5(4)	-1.0(1.1)	3.5(3)	-0.5(1.1)	-1.1(6)	0.90
Literature:							
DR, A2-collaboration $(2022)^b$	10.99(16)(47)(17)(34)	3.14(21)(24)(20)(35)	$-2.87(52)^{*}$	$2.70(43)^{*}$	$-0.85(72)^{*}$	$2.04(43)^{*}$	0.89

Table 1: The proton scalar and spin pol. in units 10^{-4} fm³ (scalar) and 10^{-4} fm⁴ (spin). a : Errors are given as (fit)(model)

 b : Errors are given as (statistical)(systematic)(spin polarizability)(model)

*: Values are not fitted, but taken from PHYSICAL REVIEW C 102, 035205 (2020)

Summary and Conclusions PWA of RCS

- Proton polarizabilities related to 2γ -exchange in scattering / structure corrections in μ H
- In the past: tensions between ChPT and fixed-t DR extractions of polarizabilities
 - Model-independent ansatz needed
- Mainz Partial-Wave-Analysis of RCS:
 - No resonances below the pion threshold
 - Multipoles are real
 - Forward-scattering is determined via the sum rules (photo absorption cross sections)
- New precise data from A2 and HIGS:
 - Preliminary PWA of new world data leads to increased value of γ_{M1M1} as compared to Mainz PWA '18
- Analysis in progress

Chiral Dynamics 2024, Bochum

• Preliminary PWA of A2 data shows trend towards a larger magnetic polarizability, similar to $\beta_{M1}^{BChPT} = 3.9(7) \times 10^{-4} \, \text{fm}^3$

Timon Esser (JGU Mainz)

Back-up

