

C and CP violation in effective field theories and applications to η -meson decays

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn, Germany

Chiral Dynamics 2024 Ruhruniversität Bochum, 26/8/2024

Outline

 η and η' : properties, symmetries, quantum numbers

C and CP violation

- EFT framework Akdag, BK, Wirzba, JHEP 06 (2023) 154
- C-odd Dalitz plot asymmetries Akdag, Isken, BK, JHEP 02 (2022) 137

• relating
$$\eta o \pi^0 \pi^+ \pi^-$$
 to $\eta o \pi^0 \ell^+ \ell^-$

Akdag, BK, Wirzba, JHEP **03** (2024) 059

•
$$\eta^{(\prime)} o \gamma \ell^+ \ell^-$$
, $\eta^{(\prime)} o \pi^+ \pi^- \ell^+ \ell^-$ Herz BSc thesis 2023

Summary / Outlook

η and η' properties

- quantum numbers $I^G J^{PC} = 0^+ 0^{-+}$
 - \longrightarrow C, P eigenstates, all additive quantum numbers are zero
 - \longrightarrow flavour-conserving lab for symmetry tests
- η : (largely) (pseudo-)Goldstone boson, $\Gamma_{\eta} = 1.31 \, \text{keV}$
 - \rightarrow all decay modes forbidden at leading order by symmetries (*C*, *P*, angular momentum, isospin/*G*-parity...)
- η' : no Goldstone boson due to $U(1)_A$ anomaly, $\Gamma_{\eta'} = 196 \text{ keV}$ \longrightarrow still much narrower than e.g. ω, ϕ
- theoretical methods:
 - \triangleright (large- N_c) chiral perturbation theory
 - b dispersion theory (final-state interactions)
 - ▷ (sometimes) vector-meson dominance
- new experiments: JLab Eta Factory (JEF), → L. Gan this afternoon Rare Eta Decays with a TPC for Optical Photons (REDTOP)

Patterns of discrete symmetry breaking

• search for *CP* violation beyond the Standard Model (BSM)

Class	Violated	Conserved	Interaction
0		C, P, T, CP, CT, PT, CPT	strong, electromagnetic
Ι	C, P, CT, PT	T, CP, CPT	(weak, with no KM phase or flavor-mixing)
II	P, T, CP, CT	C, PT, CPT	
III	C, T, PT, CP	P, CT, CPT	
IV	C, P, T, CP, CT, PT	CPT	weak

- class II: P, CP violation
 - \triangleright QCD θ -term; in general: electric dipole moments (EDMs)
 - $\triangleright \eta^{(\prime)}$ decay examples: $\eta^{(\prime)} \rightarrow 2\pi$, $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma^{(*)}$
 - \longrightarrow largely excluded indirectly via EDMs Gan et al. 2020
- class III: *C*, *CP* violation ["ToPe" = *T*-odd, *P*-even]
 - far less discussed
 - $\triangleright \eta^{(\prime)}$ decay examples: $\eta^{(\prime)} \to 3\gamma, \eta^{(\prime)} \to \pi^0 \gamma^* \dots$

C and CP violation

• $\eta^{(\prime)}$ are C = +1 eigenstates: opportunity to test C violation!

Channel	Branching ratio	Note
$\eta \rightarrow 3\gamma$	$< 1.6 \times 10^{-5}$	
$\eta ightarrow \pi^0 \gamma$	$< 9 \times 10^{-5}$	Violates angular momentum conservation or gauge invariance
$\eta \to \pi^0 e^+ e^-$	$< 7.5 \times 10^{-6}$	C, CP-violating as single- γ process
$\eta o \pi^0 \mu^+ \mu^-$	$< 5 \times 10^{-6}$	C, CP-violating as single- γ process
$\eta ightarrow 2\pi^0 \gamma$	$< 5 \times 10^{-4}$	
$\eta \rightarrow 3\pi^0 \gamma$	$< 6 \times 10^{-5}$	

• example operators of "dimension 7":

$$\frac{1}{\Lambda^3}\bar{\psi}\gamma_5 D_{\mu}\psi\,\bar{\chi}\gamma^{\mu}\gamma_5\chi + \text{h.c.}\,,\qquad \frac{1}{\Lambda^3}\bar{\psi}\sigma_{\mu\nu}\lambda_a\psi G_a^{\mu\lambda}F_{\lambda}^{\nu}$$

 ψ, χ : quarks, $F^{\mu\nu}, G^{\mu\nu}_a$: gauge fields Khriplovich 1991; Ramsey-Musolf 1999; Kurylov et al. 2001

 electroweak radiative corrections mix class II and class III still weaker EDM constraints

Standard-Model Effective Field Theory:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

Standard-Model Effective Field Theory:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

• ToPe operators at dimension 7?

$$\frac{1}{\Lambda^3}\bar{\psi}\gamma_5\ddot{D}_{\mu}\psi\,\bar{\chi}\gamma^{\mu}\gamma_5\chi\qquad \frac{1}{\Lambda^3}\bar{\psi}\sigma_{\mu\nu}\lambda_a\psi G_a^{\mu\lambda}F_{\lambda}^{\nu}$$

Standard-Model Effective Field Theory:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

• ToPe operators at SMEFT dimension 8—requires Higgs vev!

$$\frac{v}{\Lambda^4} \underbrace{\bar{\psi}\gamma_5 \vec{D}_\mu \psi \, \bar{\chi} \gamma^\mu \gamma_5 \chi}_{}$$

chirality-breaking

 $\frac{v}{\Lambda^4} \underbrace{\bar{\psi}\sigma_{\mu\nu}\lambda_a\psi G^{\mu\lambda}_a F^{\nu}_\lambda}_{\Lambda^4}$

chirality-breaking

Low-energy Effective Field Theory:

$$\mathcal{L}_{\text{LEFT}} = v\tilde{\mathcal{L}}_3 + \mathcal{L}_{\text{QCD+QED}} + \frac{1}{v}\tilde{\mathcal{L}}_5 + \frac{1}{v^2}\tilde{\mathcal{L}}_6 + \frac{1}{v^3}\tilde{\mathcal{L}}_7 + \frac{1}{v^4}\mathcal{L}_8 + \dots$$

• in LEFT, below electroweak scale, retain both

$$\frac{v}{\Lambda^4}$$
 chirality-breaking + $\frac{1}{\Lambda^4}$ chirality-conserving

A loophole? *W*-exchange in SMEFT

• *claim:* the dim.-7 LEFT operator

Shi, Liang, Gardner 2024

 $\bar{\psi}\gamma_5 \vec{D}_\mu \psi \, \bar{\chi} \gamma^\mu \gamma_5 \chi$

can be generated in SMEFT using dim.-6 W^{\pm} , Z couplings:

• dimensional scaling changed according to

$$rac{v}{\Lambda^4} \longrightarrow rac{v}{\Lambda^2} rac{1}{M_W^2} \propto rac{1}{v \Lambda^2}$$

- ▷ same order as *P*-odd, *C*-even EDM ops. beyond θ -term
- ▷ does something similar work for other ToPe operators, too?

How do we match to chiral perturbation theory?

- external-source method
- LEFT operators as

chirality-violating $(\lambda^{(\dagger)})$ / chirality-conserving $(\lambda_{L,R})$ spurion fields analogy: quark masses (\mathcal{M}) / quark charges $(q_{L,R})$

• $SU(3)_L \times SU(3)_R$ invariance, hermiticity, discrete symmetries:

$$\mathcal{L}_{\text{LEFT}} = \frac{v}{\Lambda^4} c_{\psi\chi}^{(a)} \,\bar{\psi} \bar{D}_{\mu} \gamma_5 \psi \,\bar{\chi} \gamma^{\mu} \gamma_5 \chi + \dots$$
$$\longrightarrow \mathcal{L}_{\chi} = \frac{v}{\Lambda^4} c_{\psi\chi}^{(a)} i g_1^{(a)} \langle \lambda D_{\mu} U^{\dagger} + \lambda^{\dagger} D_{\mu} U \rangle \langle \lambda_L D^{\mu} U^{\dagger} U + \lambda_R D^{\mu} U U^{\dagger} \rangle$$
$$+ \dots$$

 \rightarrow series of chiral operators for each LEFT operator

Gasser, Leutwyler 1984

Applications

How can C be violated in η decays?

- C-odd decay: neutral pseudoscalars + odd no. photons $\propto 1/\Lambda^8$
- SM–C-odd interference: asymmetries $\propto 1/\Lambda^4$

Decay	Mesonic operator	$\mathcal O$	Current measurement	Theoretical estimate
$\eta^{(\prime)} \to \pi^0 \pi^+ \pi^-$	$i \eta^{(\prime)} \partial^{\mu} \pi^0 (\pi^+ \partial_{\mu} \pi^ \pi^- \partial_{\mu} \pi^+)$	$p^{2}\left(\delta^{0} ight)$	$g_2 = -9(5) \cdot 10^3 / \text{TeV}^2$	$ g_2 \sim 3 \cdot 10^{-4} \mathrm{TeV}^2/\Lambda^4$
$\eta' \to \eta \pi^+ \pi^-$	$i \eta' \partial^{\mu} \eta (\pi^+ \partial_{\mu} \pi^ \pi^- \partial_{\mu} \pi^+)$	$p^{2}\left(\delta^{1}\right)$	$g_1 = 1(1) \cdot 10^6 / \mathrm{TeV}^2$	$ g_1 \sim 3 \cdot 10^{-4} \mathrm{TeV}^2/\Lambda^4$
$\eta \to \pi^0 e^+ e^-$	$\eta \partial_\mu \pi^0 ar e \gamma^\mu e$	$p^{2}\left(\delta^{1}\right)$	$\mathrm{BR} < 7.5 \cdot 10^{-6}$	$\mathrm{BR} \sim 7 \cdot 10^{-27} \mathrm{TeV}^8 / \Lambda^8$
$\eta' \to \eta e^+ e^-$	$\eta^\prime \partial_\mu \eta ar e \gamma^\mu e$	$p^{2}\left(\delta^{1}\right)$	$\mathrm{BR} < 2.4 \cdot 10^{-3}$	$\mathrm{BR}\sim9\cdot10^{-29}\mathrm{TeV}^8/\Lambda^8$
$\eta \to \pi^+\pi^-\gamma$	$\epsilon_{lphaeta\mu u}\etaig(\partial^ u\pi^+\partial^ ho\partial^\mu\pi^-$	$p^{6}\left(\delta^{2}\right)$	$A_{LR} = 0.009(4)$	$ A_{LR} \sim 5 \cdot 10^{-16} \mathrm{TeV}^4 / \Lambda^4$
	$+\partial^{\nu}\pi^{-}\partial^{\rho}\partial^{\mu}\pi^{+}\big)\partial_{\rho}F^{\alpha\beta}$			
$\eta \to \pi^0 \pi^0 \gamma$	$\epsilon_{\alpha\beta\mu\nu}\eta\big(\partial^{\nu}\pi^{0}\partial^{\rho}\partial^{\mu}\pi^{0}$	$p^{6}\left(\delta^{3} ight)$	$\mathrm{BR} < 5 \cdot 10^{-4}$	$\mathrm{BR} \sim 1 \cdot 10^{-29} \mathrm{TeV}^8 / \Lambda^8$
	$+\partial^{ u}\pi^{0}\partial^{ ho}\partial^{\mu}\pi^{0}ig)\partial_{ ho}F^{lphaeta}$			
$\eta' \to \eta \pi^0 \gamma$	$\epsilon_{lphaeta\mu u}\eta^\prime\partial^\mu\eta\partial^ u\pi^0F^{lphaeta}$	$p^{4}\left(\delta^{3} ight)$	_	$\mathrm{BR}\sim 2\cdot 10^{-28}\mathrm{TeV}^8/\Lambda^8$
$\eta \to 3\gamma$	$\epsilon^{\mu\nu\rho\sigma}\partial_{\alpha}\eta(\partial^{\gamma}F^{\alpha\beta})(\partial_{\gamma}\partial_{\beta}F_{\rho\sigma})F_{\mu\nu}$	$p^{10}\left(\delta^4\right)$	$\mathrm{BR} < 4 \cdot 10^{-5}$	$\mathrm{BR} \sim 1 \cdot 10^{-36} \mathrm{TeV}^8 / \Lambda^8$

... and many more in Akdag, BK, Wirzba 2022

A new old proposal: Dalitz plot asymmetries

• $\eta(I^G = 0^+) \rightarrow 3\pi(I^G = 1^-)$ breaks *G*-parity:

▷ SM: C conserved, isospin broken (& el.magn. suppressed)

 \longrightarrow ideal process to extract $m_u - m_d$

see e.g. Bijnens, Ghorbani 2007; Colangelo et al. 2018...

▷ BSM: *C* broken, isospin either conserved or broken

 $\mathcal{M}(s,t,u) = \mathcal{M}_1^C(s,t,u) + \mathcal{M}_0^{\mathcal{Q}}(s,t,u) + \mathcal{M}_2^{\mathcal{Q}}(s,t,u)$

- interference: $\pi^+ \leftrightarrow \pi^-$ asymmetries linear in BSM couplings Gardner, Shi 2019
- follow SM strategy for hadronic amplitudes: Akdag, Isken, BK 2021 analyse $\mathcal{M}_{0,2}^{\emptyset}(s,t,u)$ using dispersive Khuri–Treiman framework

$\eta ightarrow \pi^+\pi^-\pi^0$: amplitude decomposition

- Bose symm.: even (odd) $\pi\pi$ isospin \leftrightarrow even (odd) partial waves
- "reconstruction theorem": symmetrised partial-wave expansion

$$\mathcal{M}_{1}^{C}(s,t,u) = \mathcal{F}_{0}(s) + (s-u)\mathcal{F}_{1}(t) + (s-t)\mathcal{F}_{1}(u) + \mathcal{F}_{2}(t) + \mathcal{F}_{2}(u) - \frac{2}{3}\mathcal{F}_{2}(s)$$

 $\mathcal{M}_0^{\mathscr{Q}}(s,t,u) = (t-u)\mathcal{G}_1(s) + (u-s)\mathcal{G}_1(t) + (s-t)\mathcal{G}_1(u)$

 $\mathcal{M}_{2}^{\mathscr{O}}(s,t,u) = 2(u-t)\mathcal{H}_{1}(s) + (u-s)\mathcal{H}_{1}(t) + (s-t)\mathcal{H}_{1}(u) - \mathcal{H}_{2}(t) + \mathcal{H}_{2}(u)$

 \rightarrow rescattering for *S*- and *P*-waves Gardner, Shi 2019 cf. also Bernard et al. 2024 for $K \rightarrow 3\pi$

$\eta ightarrow \pi^+\pi^-\pi^0$: amplitude decomposition

- Bose symm.: even (odd) $\pi\pi$ isospin \leftrightarrow even (odd) partial waves
- "reconstruction theorem": symmetrised partial-wave expansion

$$\mathcal{M}_{1}^{C}(s,t,u) = \mathcal{F}_{0}(s) + (s-u)\mathcal{F}_{1}(t) + (s-t)\mathcal{F}_{1}(u) + \mathcal{F}_{2}(t) + \mathcal{F}_{2}(u) - \frac{2}{3}\mathcal{F}_{2}(s)$$

 $\mathcal{M}_0^{\mathscr{C}}(s,t,u) = (t-u)\mathcal{G}_1(s) + (u-s)\mathcal{G}_1(t) + (s-t)\mathcal{G}_1(u)$

 $\mathcal{M}_{2}^{\mathscr{O}}(s,t,u) = 2(u-t)\mathcal{H}_{1}(s) + (u-s)\mathcal{H}_{1}(t) + (s-t)\mathcal{H}_{1}(u) - \mathcal{H}_{2}(t) + \mathcal{H}_{2}(u)$

 \rightarrow rescattering for *S*- and *P*-waves Gardner, Shi 2019 cf. also Bernard et al. 2024 for $K \rightarrow 3\pi$

- note: C-even/odd \leftrightarrow even/odd under $t \leftrightarrow u$
- *T*-odd requires $\mathcal{M}_{0,2}^{\emptyset}$ relatively imaginary w.r.t. \mathcal{M}_1^C at tree level

$\eta ightarrow \pi^+\pi^-\pi^0$: amplitude decomposition

- Bose symm.: even (odd) $\pi\pi$ isospin \leftrightarrow even (odd) partial waves
- "reconstruction theorem": symmetrised partial-wave expansion

$$\mathcal{M}_{1}^{C}(s,t,u) = \mathcal{F}_{0}(s) + (s-u)\mathcal{F}_{1}(t) + (s-t)\mathcal{F}_{1}(u) + \mathcal{F}_{2}(t) + \mathcal{F}_{2}(u) - \frac{2}{3}\mathcal{F}_{2}(s)$$

 $\mathcal{M}_0^{\mathcal{C}}(s,t,u) = (t-u)\mathcal{G}_1(s) + (u-s)\mathcal{G}_1(t) + (s-t)\mathcal{G}_1(u)$

 $\mathcal{M}_{2}^{\mathscr{C}}(s,t,u) = 2(u-t)\mathcal{H}_{1}(s) + (u-s)\mathcal{H}_{1}(t) + (s-t)\mathcal{H}_{1}(u) - \mathcal{H}_{2}(t) + \mathcal{H}_{2}(u)$

 \rightarrow rescattering for *S*- and *P*-waves Gardner, Shi 2019 cf. also Bernard et al. 2024 for $K \rightarrow 3\pi$

- note: C-even/odd \leftrightarrow even/odd under $t \leftrightarrow u$
- *T*-odd requires $\mathcal{M}_{0,2}^{\emptyset}$ relatively imaginary w.r.t. \mathcal{M}_1^C at tree level
- Omnès solutions ($\mathcal{A}_I = \mathcal{F}_I, \mathcal{G}_I, \mathcal{H}_I$):

$$\mathcal{A}_{I}(s) = \Omega_{I}(s) \left(P_{n-1}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{dx}{x^{n}} \frac{\sin \delta_{I}(x) \hat{\mathcal{A}}_{I}(x)}{|\Omega_{I}(x)| (x-s)} \right)$$

 \triangleright $P_{n-1}(s)$: subtraction polynomial, free parameters

$\eta ightarrow \pi^+\pi^-\pi^0$: parameters, data

SM amplitude \mathcal{M}_1^C

- minimal subtraction scheme: 3 (real) constants
- "data" fit to

 - \triangleright A2 Dalitz plot $\eta \rightarrow 3\pi^0$
 - ▷ chiral constraints [at $\mathcal{O}(p^4)$]
 - $\longrightarrow \chi^2/{
 m dof} pprox 1.054$, works very well!

A2 2018

Colangelo et al. 2018

BSM amplitude $\mathcal{M}_1^C + \mathcal{M}_0^{arnothing} + \mathcal{M}_2^{arnothing}$

- by same assumptions: 1 imaginary subtraction each for $\mathcal{M}_{0,2}^{\mathscr{C}}$ act as overall normalisation constants $\longrightarrow \chi^2/\text{dof} \approx 1.048$
- all C-/CP-violating signals vanish within $(1-2)\sigma$

$\eta ightarrow \pi^+\pi^-\pi^0$: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)

$$\left|\mathcal{M}_{c}\right|^{2} \approx \left|\mathcal{M}_{1}^{C}\right|^{2} + 2\operatorname{Re}\left[\mathcal{M}_{1}^{C}\left(\mathcal{M}_{0}^{\mathcal{O}}\right)^{*}\right] + 2\operatorname{Re}\left[\mathcal{M}_{1}^{C}\left(\mathcal{M}_{2}^{\mathcal{O}}\right)^{*}\right]$$

- asymmetries constrained to the permille level
- nonvanishing interference due to strong FSI phases!

$\eta ightarrow \pi^+\pi^-\pi^0$: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)

$$\left|\mathcal{M}_{c}\right|^{2} \approx \left|\mathcal{M}_{1}^{C}\right|^{2} + 2\operatorname{Re}\left[\mathcal{M}_{1}^{C}\left(\mathcal{M}_{0}^{\mathcal{Q}}\right)^{*}\right] + 2\operatorname{Re}\left[\mathcal{M}_{1}^{C}\left(\mathcal{M}_{2}^{\mathcal{Q}}\right)^{*}\right]$$

- asymmetries constrained to the permille level
- nonvanishing interference due to strong FSI phases!
- $\mathcal{M}_0^{\mathcal{C}}$ and $\mathcal{M}_2^{\mathcal{C}}$ lead to different interference patterns

Effective BSM couplings

- polynomial ambiguities \longrightarrow subtractions no good observables
- define unambigous Taylor invariants & match to these:

$$\mathcal{M}_0^{\mathscr{O}}(s,t,u) = i g_0 (s-t)(u-s)(t-u) + \mathcal{O}(p^8)$$

$$\mathcal{M}_2^{\mathscr{O}}(s,t,u) = i g_2 (t-u) + \mathcal{O}(p^4)$$

• fit corresponds to

 $g_0 = -2.8(4.5) \,\text{GeV}^{-6}, \quad g_2 = -9.3(4.6) \times 10^{-3} \,\text{GeV}^{-2}$

 \longrightarrow sensitivity $|g_0/g_2| \sim 10^3 \,\mathrm{GeV}^{-4} = \mathcal{O}(M_\pi^{-4})$

 \longrightarrow theoretical/chiral expectation: $|g_0/g_2| \sim {
m GeV}^{-4}$

• small phase space $(M_\eta - 3M_\pi \sim M_\pi)$ reduces sensitivity to $\mathcal{M}_0^{\mathscr{O}}$

Generalisation to η' decays

$\eta' ightarrow \pi^+\pi^-\pi^0$

- rather rare, $\mathcal{B}\sim 3.6\times 10^{-3} \longrightarrow {\rm data} \\ {\rm not \ so \ precise \ BESIII \ 2016} \end{cases}$
- rescale $\eta \rightarrow \pi^+\pi^-\pi^0$ with same $g_{0,2} \longrightarrow$ more sensitive to g_0 by factor ~ 100

Generalisation to η' decays

$\eta' \to \pi^+\pi^-\pi^0$

- rather rare, $\mathcal{B}\sim 3.6\times 10^{-3}\longrightarrow$ data not so precise BESIII 2016
- rescale $\eta \rightarrow \pi^+\pi^-\pi^0$ with same $g_{0,2} \longrightarrow$ more sensitive to g_0 by factor ~ 100

$\eta^\prime o \eta \pi^+ \pi^-$

- SM conserves isospin
- C-odd op. $\Delta I = 1$ \longrightarrow constrained at 10^{-2}

BESIII 2017

Extension: $\eta
ightarrow \pi^0 \ell^+ \ell^-$

• gauge invariance: $\eta(p) \to \pi^0(k)\gamma^*(q)$ vanishes for real photon:

$$\langle \pi^0(k) | j_\mu(0) | \eta(p) \rangle = e \left[q^2 (p+k)_\mu - (M_\eta^2 - M_\pi^2) q_\mu \right] F_{\eta \pi^0}(q^2)$$

 \longrightarrow can only measure dilepton decays

• *C*-even two-photon decay as Standard Model background:

 \longrightarrow H. Schäfer's talk this afternoon

e.g. $\mathcal{B}(\eta \to \pi^0 e^+ e^-) = 1.36(15) \times 10^{-9}$ $\mathcal{B}(\eta \to \pi^0 \mu^+ \mu^-) = 0.67(7) \times 10^{-9}$

based on VMD model for $\eta \to \pi^0 \gamma^* \gamma^*$ Schäfer, Zanke, Korte, BK 2023 \longrightarrow 3 orders of magnitude below current experimental limits

Correlating
$$\eta
ightarrow \pi^0 \pi^+ \pi^-$$
 and $\eta
ightarrow \pi^0 \ell^+ \ell^-$ (1)

• can correlate $\eta \to \pi^0 \pi^+ \pi^- P$ -wave and (isovector) $\eta \to \pi^0 \ell^+ \ell^-$: Akdag, BK, Wirzba 2023

$$F_{XY}^{(1)}(s) = \frac{i}{48\pi^2} \int_{4M_\pi^2}^\infty dx \,\sigma_\pi^3(x) F_\pi^{V*}(x) \,\frac{f_{XY}(x)}{x-s}$$

pion form factor $F_{\pi}^{V}(s) = \Omega_{1}(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty} dx \frac{\delta_{1}^{1}(x)}{x(x-s)}\right\}$

 \longrightarrow analogy to $\omega \to 3\pi \leftrightarrow \omega \to \pi^0 \gamma^*$ Schneider, BK, Niecknig 2012

• add isoscalar form factor (ω -exchange) using isospin + vector-meson dominance

 \longrightarrow hadronic long-range contribution to *C*-odd form factor

Correlating $\eta ightarrow \pi^0 \pi^+ \pi^-$ and $\eta ightarrow \pi^0 \ell^+ \ell^-$ (2)

• isovector contribution scales with C-odd $\eta \to \pi^0 \pi^+ \pi^-$ couplings:

	isovector	isovector + isoscalar	experiment
$\mathcal{B}(\eta\to\pi^0 e^+e^-)$	$<20\cdot 10^{-6}$	$< 29 \cdot 10^{-6}$	$< 7.5 \cdot 10^{-6}$
$\mathcal{B}(\eta \to \pi^0 \mu^+ \mu^-)$	$< 7.2 \cdot 10^{-6}$	$< 10 \cdot 10^{-6}$	$< 5.0 \cdot 10^{-6}$

- isovector and isoscalar contributions of comparable magnitude
- direct experimental limit stronger than indirect from $\eta \to \pi^0 \pi^+ \pi^-$
- refined regression to $\eta \to \pi^0 \pi^+ \pi^-$ with $\eta \to \pi^0 \ell^+ \ell^-$ as constraint:

$$|g_0| < 7.3 \,\mathrm{GeV}^{-6} \longrightarrow |g_0| < 4.4 \,\mathrm{GeV}^{-6}$$

- similar relations $\eta' \to \eta \pi^+ \pi^- \leftrightarrow \eta' \to \eta \ell^+ \ell^-$ worked out Akdag, BK, Wirzba 2023
- beware: interference with short-range effects neglected (*C*-odd photon couplings, leptonic operators)

- Dalitz decays; SM: given by transition form factors $F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ \longrightarrow S. Holz' talk this afternoon
- *C*-odd effects can be induced by quark–lepton operators

 $ar{\ell}\gamma^{\mu}\gamma_5\ell\,ar{\psi} \overleftrightarrow{D}_{\mu}\gamma_5\psi$ etc.

• Dalitz plot asymmetries from *C*-odd/*C*-even interference

 ${
m Re}\left({\cal M}_{
m BSM}{\cal M}_{
m SM}^{\dagger}
ight)\,\propto\,{
m Im}\,F_{\eta^{(\prime)}\gamma^{*}\gamma}(q^{2})$ Herz BSc 2023

- Dalitz decays; SM: given by transition form factors $F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ \longrightarrow S. Holz' talk this afternoon
- *C*-odd effects can be induced by quark–lepton operators

 $ar{\ell}\gamma^{\mu}\gamma_5\ell\,ar{\psi}\overleftrightarrow{D}_{\mu}\gamma_5\psi$ etc.

• Dalitz plot asymmetries from *C*-odd/*C*-even interference

 ${
m Re}\left({\cal M}_{\sf BSM}{\cal M}_{\sf SM}^{\dagger}
ight)\,\propto\,{
m Im}\,F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ Herz BSc 2023

- Dalitz decays; SM: given by transition form factors $F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ \longrightarrow S. Holz' talk this afternoon
- *C*-odd effects can be induced by quark–lepton operators

 $ar{\ell}\gamma^{\mu}\gamma_5\ell\,ar{\psi}\overleftrightarrow{D}_{\mu}\gamma_5\psi$ etc.

• Dalitz plot asymmetries from *C*-odd/*C*-even interference

 ${
m Re}\left({\cal M}_{\sf BSM}{\cal M}_{\sf SM}^{\dagger}
ight)\,\propto\,{
m Im}\,F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ Herz BSc 2023

- Dalitz decays; SM: given by transition form factors $F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ \longrightarrow S. Holz' talk this afternoon
- *C*-odd effects can be induced by quark–lepton operators

 $\bar{\ell}\gamma^{\mu}\gamma_5\ell\,\bar{\psi}\ddot{D}_{\mu}\gamma_5\psi$ etc.

• Dalitz plot asymmetries from *C*-odd/*C*-even interference

 ${
m Re}\left({\cal M}_{\sf BSM}{\cal M}_{\sf SM}^{\dagger}
ight)\,\propto\,{
m Im}\,F_{\eta^{(\prime)}\gamma^*\gamma}(q^2)$ Herz BSc 2023

- consequences:
 - $\triangleright \operatorname{\mathsf{Asym}}(\eta' \to \gamma \ell^+ \ell^-) \gg \operatorname{\mathsf{Asym}}(\eta \to \gamma \ell^+ \ell^-)$

 $\longrightarrow \rho(770), \, \omega(782)$ resonances

 $\triangleright \operatorname{\mathsf{Asym}}(\eta^{(\prime)} \to \gamma \mu^+ \mu^-) > \operatorname{\mathsf{Asym}}(\eta^{(\prime)} \to \gamma e^+ e^-)$

 \longrightarrow dominance of photon pole

 \triangleright no such asymmetries generated for $\pi^0 \to \gamma \ell^+ \ell^-$

 \longrightarrow dilepton masses always below $\pi^+\pi^-$ cut

Asymmetries in $\eta^{(\prime)}
ightarrow \pi^+\pi^-\ell^+\ell^-$

- SM amplitude $\mathcal{F}(s,s_{\ell}) \propto f_1(s) imes ar{F}(s_{\ell})$ dispersively Holz et al. 2021
- *P*-odd, *C*-even operators induce plane–plane asymmetries $\propto \sin 2\phi$ [Gao 2002] Or $\propto \sin \phi$ [Zillinger et al. 2022]
- P-even, C-odd operators can induce

Herz BSc 2023

- \triangleright asymmetry in $\theta_{\ell} \to \theta_{\ell} + \pi \propto \operatorname{Im} \overline{F}(s_{\ell}) \quad (\longrightarrow \operatorname{only} \eta') \quad or$
- \triangleright asymmetry in $\theta_{\pi} \to \theta_{\pi} + \pi \propto \operatorname{Im} f_1(s) \quad (\longrightarrow \text{ larger for } \eta')$

(*C*-odd *P*-*D*-wave interference as in $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma$)

 \rightarrow exp. studies of more general asymmetries strongly advised!

Summary & Outlook

C and **CP** violation

- fundamental (LEFT) operator basis established
 - \longrightarrow correct scaling in SMEFT to be checked
- matching to ChPT performed
- dispersive formalism for amplitude analysis of Dalitz plots $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \pi^0, \ \eta' \rightarrow \eta \pi^+ \pi^-$ worked out
 - \longrightarrow asymmetries due to SM–BSM interferences

 \longrightarrow strong rescattering central

• dispersion-theoretical correlations between Dalitz plot asymmetries and semileptonic decays $\eta \to \pi^0 \ell^+ \ell^-$ etc.

•
$$\eta^{(\prime)} \to \gamma \ell^+ \ell^-$$
, $\eta^{(\prime)} \to \pi^+ \pi^- \ell^+ \ell^-$:

further opportunities to test SM–BSM interferences \longrightarrow sensitivity $\propto \text{Im}(SM)$ favours η' decays

Phase shift input

Not all *P*-waves are equal!

Fit results KLOE Dalitz plot $\eta ightarrow \pi^+\pi^-\pi^0$

Fit results BESIII (projected) Dalitz plot $\eta' o \eta \pi^+ \pi^-$

BESIII 2017 vs. Akdag, Isken, BK 2021